Software suiteHEART®

Software de análisis cMRI

Instrucciones de uso

NeoSoft, LLC

NS-03-043-0003-ES Rev. 2 Derechos de autor 2023 NeoSoft, LLC Todos los derechos reservados

Historial de revisión

Rev	Fecha	Descripción del cambio	Actualización relacionada con la seguridad (Sí/No)
1	22AGO2022	Actualizado para la versión 5.1.0 del producto. Estas IU reemplazan los anteriores números de idioma/revisión/parte: suiteHEART® Software IFU - NS-03-039-0003, EN-Rev. 6 suiteHEART® Software IFU - NS-03-039-0004, FR-Rev. 5 suiteHEART® Software IFU - NS-03-039-0005, DE-Rev. 5 suiteHEART® Software IFU - NS-03-039-0007, EL-Rev. 5 suiteHEART® Software IFU - NS-03-040-0003, IT-Rev. 4 suiteHEART® Software IFU - NS-03-040-0003, IT-Rev. 4 suiteHEART® Software IFU - NS-03-040-0004, ES-Rev. 4 suiteHEART® Software IFU - NS-03-040-0006, TR-Rev. 4 suiteHEART® Software IFU - NS-03-040-0006, TR-Rev. 4 suiteHEART® Software IFU - NS-03-040-0007, SV-Rev. 4 suiteHEART® Software IFU - NS-03-040-0007, PT-PT-Rev. 4 suiteHEART® Software IFU - NS-03-041-0005, ZH-CN-Rev. 2 suiteHEART® Software IFU - NS-03-041-0007, HU-Rev. 3 suiteHEART® Software IFU - NS-03-041-0007, HU-Rev. 3 suiteHEART® Software IFU - NS-03-042-0006, JA-Rev. 1 suiteHEART® Software IFU - NS-03-042-0006, JA-Rev. 1	No No
2	31MAY2023	Actualizado para la versión 5.1.1 del producto. Estonio añadido. Se movió la información reglamentaria al documento Anexo reglamentario.	No

NeoSoft, LLC N27 W23910A Paul Road Pewaukee, WI 53072 EE. UU.

Teléfono: 262-522-6120

Sitio web: www.neosoftllc.com

Ventas: orders@neosoftmedical.com Servicio: service@neosoftmedical.com

Para ver la información de cumplimiento (representante autorizado, importador, información de registro) después de iniciar la aplicación, haga clic en «Ayuda» o «Acerca de» en la pantalla principal. Seleccione la opción «Información regulatoria». El documento se abrirá en un visor de pdf.

Tabla de contenidos

Seguridad 1

Introducción 1
Indicaciones de uso 1
Uso previsto 2
Formatos de imagen DICOM compatibles 2
Avisos de seguridad 3
Peligros del equipo 3

Ciberseguridad 4

Comenzar 6

Inicio y salida de la aplicación 6
Inicio del software suiteHEART® 6
Salida del software suiteHEART® 7

Descripción general de la interfaz de usuario 8

Descripción general 8 Modos de análisis/visor 9 Navegación por las series 9 Ventana del editor y vista del modo 10 Opciones del menú de Archivo 10 Opciones del Menú de herramientas 10 Opciones del menú de ayuda 11 Controles de vista de editor 11 Controles de la vista de imagen 11 Ventanas gráficas de referencia cruzada 12 Herramientas de manipulación de imágenes 12 Teclas rápidas 14 Panel de resultados 15 Elaboración de informes 18 Examinar BD 18 Características de Examinar BD 19 Procedimiento de Examinar BD 20

Herramientas de gestión de imagen 21

Visor 21
Imagen/Navegación en serie 22
Expandir/contraer serie 22
Funcionalidad del visor 23
Modo de comparación 24
Flujo de trabajo de muestra 26

Definición de preferencias 28

Configuración de preferencias 28

Pestaña Global 29

Pestaña Plantilla 37

Pestaña Macro 40

Pestaña Impresión 42

Pestaña Virtual Fellow® 43

Pestaña de Mapeo T1/T2 44

Pestaña de Elaboración de informes 45

Preferencias de Importación 47

Preferencias de exportación 47

Virtual Fellow® 48

Preprocesamiento con Virtual Fellow® 49

Interfaz de Virtual Fellow® 50

Selecciones de Virtual Fellow® 50

Ver protocolos 52

Teclas rápidas: ventanas gráficas de eje largo 53

Selección de usuario de una serie para ver protocolos 54

Selección del usuario de una serie para ventanas de visualización de referencia cruzada de eje largo 55

Actualización automática 56

Flujo de trabajo 56

Edición de bordes 58

ROI de spline de puntos 58

Herramienta Retoques 59

Herramienta de Extracción de bordes 60

Eliminar un borde 62

Herramienta de edición adicional (solo función de análisis) 62

Análisis de funciones 63

Ventrículos 64

Calcular mediciones de índice 64

Segmentación automática de VI y VD 64

Procedimiento de análisis manual de la función del VI y del VD 68

Interpolación Basal 69

Corrección de movimiento entre series 71

Vista de la matriz 73

Resultados del análisis de la función ventricular 76

Análisis regional ventricular izquierdo 78

Análisis de disincronía 79

Segmentación automática de eje largo 80

Aurícula 81

Análisis manual de Al y AD 81

Análisis automático de AI o AD 82

Dimensiones y área auriculares 82

Mediciones predeterminadas 84

Realizar una medición 84

Análisis de plano de la válvula aórtica 86

Procedimiento de análisis de plano de válvula aórtica 86

Análisis de flujo 89

Análisis de flujo utilizando la segmentación automática 91
Edición del borde 94
Opciones de corrección de la línea de base 97
Herramientas de flujo 99
Superposición de color 100
Velocidad pico definida por el usuario 101
Selecciones de modo de curva 101
Ver Resultados de flujo 104
Cambio de etiqueta de las categorías para el Flujo1, Flujo2 104
Análisis integrado 106

Evaluación miocárdica 114

Definir etiquetas de mediciones de resultados 115
Procedimiento de análisis de Realce tardío 115
Análisis T2 119
Análisis combinado 121
Realce tardío y T2 121
Resultados diferenciales de señal 125
Análisis de Realce temprano 126
Herramienta de ROI local 127

Análisis de mapeo T1 129

Realizar un análisis 130

Mapa polar de 16 segmentos 132

Eliminar bordes 133

Revisar las curvas T1 133

Inversion Correction Factor (ICF) Siemens MyoMaps 134

Análisis de mapeo T2 135

Realizar un análisis 136

Mapa polar de 16 segmentos 138

Eliminar bordes 139

Revisar las curvas T2 139

Perfusión miocárdica 140

Realizar análisis de perfusión miocárdica 142

Edición del borde 143

Revisar resultados 143

Revisar resultados de gráfico/tabla 143

Calcular la pendiente ascendente relativa (RU) y el índice de reservas (RI) 144

Definición de los parámetros calculados a partir de la curva de perfusión miocárdica 145

Análisis del foramen oval permeable (FOP) 146

T2* 150

Procedimiento de análisis del corazón **151**Crear mapa de colores de miocardio **152**Parámetros de ajuste **152**

Visor de flujo 3D/4D 154

Elaboración de informes 167

Demografías de pacientes 168

Procedimiento de informe 169

Añadir imágenes, gráficos o tablas al informe 170

Diagramas polares 171

Vista previa del informe 172

Aprobar el examen 172

Opciones de exportación 173

Revisar un examen aprobado 174

Base de datos de informes 176

Procedimiento de las herramientas de la Base de datos de informes
Realizar una consulta 177
Recuperar estudios 178
Ver los resultados 179
Guardar una consulta 180
Eliminar un favorito 181
Exportar resultados de búsqueda a un archivo HTML 182
Exportar la base de datos 183
Importar una base de datos 183

Apéndice 184

Artículos de referencia **184**Apéndice B - Ejemplo de plano de exploración de análisis funcional **185**

Índice 187

Seguridad

Introducción

Para garantizar un uso eficiente y seguro, es esencial leer esta sección de seguridad y todos los temas relacionados antes de usar el software. Es importante que lea y comprenda el contenido de este manual antes de utilizar este producto. Debe repasar periódicamente los procedimientos y las precauciones de seguridad.

El software está diseñado para ser utilizado únicamente por personal capacitado y calificado.

El software suiteDXT/suiteHEART® tiene una vida útil prevista de 7 años desde su fecha de lanzamiento original.

PRECAUCIÓN: La ley federal establece que la venta, la distribución y el uso de este dispositivo solo puede efectuarse por un médico o a pedido de este.

Los términos "peligro", "advertencia" y "precaución" se utilizan en todo este manual para destacar los riesgos y asignarles un grado o nivel de gravedad. El peligro se define como una fuente de posibles lesiones que puede sufrir una persona. Familiarícese con las descripciones terminológicas que figuran en la siguiente tabla:

Tabla 1: Terminología de seguridad

Gráfico	Definición		
<u>^</u>	El término "peligro" se utiliza para identificar aquellas condiciones o acciones para las cuales se sabe que existe un riesgo específico que <u>causará</u> lesiones personales graves, la muerte o daños		
PELIGRO:	materiales sustanciales si no se siguen las instrucciones.		
\triangle	El término "advertencia" se utiliza para identificar condiciones o acciones para las cuales se sabe que existe un riesgo específico.		
ADVERTENCIA:			
\triangle	El término "precaución" se utiliza para identificar condiciones o acciones para las cuales se sabe que existe un riesgo potencial.		
PRECAUCIÓN:			

Indicaciones de uso

El software suiteHEART® es una herramienta de software analítico que proporciona herramientas reproducibles para la revisión y el informe de imágenes médicas. El software suiteHEART® puede importar imágenes médicas de un sistema de RM y mostrarlas en un área de visualización en la pantalla del ordenador. El área de visualización permite acceder a múltiples estudios y series de imágenes de múltiples cortes y fases. Las secuencias de imágenes de múltiples fases se pueden mostrar en modo cine para facilitar la visualización.

También hay disponible una interfaz de entrada de informes. Las herramientas de medición en la interfaz del informe permiten llenar de manera rápida y confiable un informe clínico completo de un examen de imágenes. Las herramientas disponibles incluyen: herramientas de medición de punto, distancia, área y volumen, como fracción de eyección, gasto cardíaco, volumen diastólico final, volumen sistólico final y mediciones de flujo de volumen.

Las herramientas semiautomáticas están disponibles para la detección del contorno del ventrículo izquierdo, la detección del plano de la válvula, la detección del contorno del vaso para el análisis de flujo, el análisis de la intensidad de la señal para la medición del tamaño del infarto y el miocardio y el análisis de T2*.

Los resultados de las herramientas de medición son interpretados por el médico y pueden comunicarse a los médicos a cargo de la remisión.

Cuando las interpreta un médico capacitado, estas herramientas pueden ser útiles para respaldar la determinación de un diagnóstico.

Uso previsto

El software suiteHEART® está destinado a ayudar al personal clínico capacitado en la calificación y cuantificación de la función cardíaca. El software proporciona las herramientas para ajustar los parámetros de las imágenes DICOM y proporciona estados de presentación en los que el usuario puede apreciar varias imágenes del corazón y la vasculatura, adquiridas por IRM a lo largo del tiempo. Además, el software proporciona herramientas para medir distancias lineales, áreas y volúmenes que pueden usarse para cuantificar la función cardíaca. Finalmente, el software proporciona las herramientas para mediciones de flujo volumétrico y la capacidad de calcular valores de flujo.

Formatos de imagen DICOM compatibles

El software suiteHEART® es compatible con los siguientes formatos DICOM: RM y MR mejorada por contraste. Consulte el manual de la Declaración de conformidad DICOM del software suiteHEART® para obtener más detalles sobre los formatos compatibles.

PRECAUCIÓN: Los datos almacenados como una imagen DICOM que ha sido importada por un PACS externo pueden no ser compatibles para el software suiteHEART®.

Avisos de seguridad

ADVERTENCIA: La aplicación solo ayuda a realizar el análisis de las imágenes y no proporciona una interpretación clínica de los resultados de forma automática. El uso y la colocación de mediciones cuantitativas quedan a criterio del usuario. Podría obtenerse un diagnóstico erróneo si las mediciones son inexactas. Las mediciones solo deben ser creadas por un usuario debidamente capacitado y calificado.

ADVERTENCIA: Los artefactos de una imagen pueden interpretarse incorrectamente, lo que lleva a un diagnóstico erróneo. No utilice imágenes que contengan artefactos para determinar un diagnóstico. El análisis solo debe ser realizado por un usuario debidamente capacitado y calificado.

ADVERTENCIA: Si las imágenes no contienen el nombre o la identificación del paciente, podría derivar en un diagnóstico para el paciente equivocado. No utilice imágenes que no contengan el nombre y la identificación del paciente para determinar un diagnóstico. Confirme visualmente la información del paciente antes de realizar el análisis.

PRECAUCIÓN: El uso de imágenes sobre las que se ha aplicado un filtro de imagen podría dar lugar a resultados alterados. El usuario debe hacer uso de su buen criterio antes de analizar las imágenes corregidas con intensidad de píxel.

Peligros del equipo

PRECAUCIÓN: El uso de equipos dañados o comprometidos puede poner al paciente en riesgo dado que se retrasa el diagnóstico. Asegúrese de que el equipo funcione correctamente.

PRECAUCIÓN: Las aplicaciones pueden ejecutarse en equipos que incluyen una o más unidades de disco duro, que pueden contener datos médicos relacionados con los pacientes. En algunos países, dicho equipo puede estar sujeto a regulaciones relacionadas con el procesamiento de datos personales y la libre circulación de dichos datos. La divulgación de datos personales puede dar lugar a acciones legales dependiendo del organismo regulador aplicable. Se recomienda encarecidamente proteger el acceso a los archivos del paciente. El usuario es responsable de comprender las leyes que regulan la información del paciente.

Ciberseguridad

NeoSoft aplica las siguientes precauciones de ciberseguridad en el diseño y la ejecución de su software:

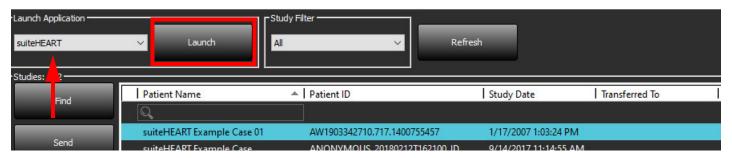
- La administración del software de NeoSoft de algunas funciones (como permisos de usuario, reconstrucción de la base de datos, etc.) solo la pueden llevar a cabo usuarios administrativos capacitados.
- El software de NeoSoft se analiza periódicamente para detectar las vulnerabilidades registradas que figuran en la base de datos NIST y se aplican los parches necesarios.
- El software de NeoSoft utiliza el estándar DICOM para almacenar los datos de los pacientes y comunicarlos a través de la red mediante un puerto que el usuario configura.
- La integridad del software de NeoSoft se verifica mediante una suma md5 antes de la instalación para garantizar que el software se entrega totalmente intacto.
- El software de NeoSoft se ha verificado para su uso en hardware con cifrado activado.
- NeoSoft mitiga los riesgos de ciberseguridad mediante el diseño conforme a la norma ISO 14971.
- Los empleados de NeoSoft reciben formación en Ciberseguridad y Protección de Información Sanitaria.
- NeoSoft no recibe ni gestiona información sanitaria protegida salvo que un cliente le conceda el acceso específico para la resolución de problemas.
- El software de NeoSoft se ha sometido a pruebas de penetración.
- Desconexión automática (ALOF) se puede configurar suiteHEART para cerrarse tras un tiempo predeterminado de inactividad. suiteDXT permanece abierto hasta que un usuario lo cierra o hasta que el sistema se reinicia.
- Controles de auditoría (AUDT) suiteHEART y suiteDXT producen registros con marca de tiempo que incluyen sucesos de software e información de usuarios
- Autorización (AUTH) En suiteDXT, un administrador puede ver y configurar el control de acceso de otros usuarios. Según cómo se configure el acceso, los usuarios únicamente podrán ver ciertos estudios en suiteDXT y suiteHEART. Por ejemplo, el usuario A solo puede acceder a la información del estudio desde la ubicación A y el usuario B desde la ubicación A y B.
- Autenticación de nodo (NAUT) Se puede configurar suiteDXT para comunicarse con otros dispositivos DICOM modificando
 el título AE, la dirección IP y el puerto DICOM. suiteHEART no utiliza la red por defecto, pero se puede configurar para que
 pueda enviar datos a otros sistemas a través de un cambio de configuración, identificando el otro sistema(s) por el título
 AE, la dirección IP y el puerto. Ambos productos se pueden utilizar sin red, importando los datos del estudio local desde el
 sistema de archivos, en lugar de enviando o recibiendo los datos del estudio a través de una red.
- Autenticación de la persona (PAUT) Se pueden configurar tanto suiteHEART como suiteDXT para permitir la autenticación del usuario, los controles de las contraseñas del usuario y la configuración de los datos disponibles específicos del paciente para el usuario conectado. La información del usuario se registra.
- Capacidades de conectividad (CONN) suiteDXT puede conectarse a otros socios DICOM configurados para transferir datos. Se puede configurar suiteHEART para enviar datos a otros sistemas a través de un cambio de configuración, identificando el otro sistema(s) por el título AE, la dirección IP y el puerto.
- Bloqueos físicos (PLOK) N/A. NeoSoft recomienda el uso de productos de seguridad de red para mayor protección.
- Endurecimiento del sistema y de las aplicaciones (SAHD) N/A. NeoSoft recomienda el uso de productos de seguridad de red para mayor protección.
- Desidentificación de datos sanitarios (DIDT): suiteDXT incluye una función de "anonimización" para desidentificar los estudios de los pacientes.
- Integridad y autenticidad de los datos de salud (IGAU) suiteDXT incluye mensajes de estado para la importación/ transferencia de la información del estudio, lo que da lugar a la confirmación de que la importación o transferencia se ha llevado a cabo con éxito y de si se han producido errores. Además, suiteHEART avisa al usuario a través de una ventana emergente si los datos de entrada esperados faltan o están dañados.
- Copia de seguridad de datos y recuperación de desastres (DTBK) Se recomienda enviar los datos generados por suiteHEART a PACS para su almacenamiento a largo plazo / copia de seguridad. En suiteDXT también se incluye una herramienta de reconstrucción de la base de datos en caso de que el software local se corrompa.
- Confidencialidad del almacenamiento de datos sanitarios (STCF) suiteHEART y suiteDXT están destinados a ser utilizados por personal cualificado y pueden estar protegidos mediante nombre de usuario y contraseña a discreción del usuario.
- Confidencialidad de la transmisión (TXCF) Toda transferencia de datos se lleva a cabo en formato DICOM.
- Integridad de la transmisión (TXIG) Toda transferencia de datos se lleva a cabo en formato DICOM.

- Actualizaciones de productos de ciberseguridad (CSUP): las instalaciones o actualizaciones se harían en forma de una nueva versión de software permitida y aplicada a discreción del cliente.
- Lista de materiales de software (SBoM) La pantalla "Acerca de" de suiteHEART enumera el software de terceros. La información del software de terceros de suiteDXT se puede encontrar en la carpeta del directorio de instalación de suiteDXT "3pInfo".
- Hoja de ruta para los componentes de terceros en el ciclo de vida del dispositivo (RDMP) NeoSoft evalúa periódicamente el software de terceros y puede actualizar suiteHEART y/o suiteDXT si fuera necesario.
- Guía de seguridad (SGUD) NeoSoft recomienda el uso de software antivirus.
- Configuración de las funciones de seguridad de la red (CNFS) Capacidad del producto para configurar las funciones de seguridad de la red en función de las necesidades del usuario: tanto suiteHEART como suiteDXT pueden utilizarse sin red. Sin embargo, si se configura para la transferencia en red, solo se necesita la información del título AE, la dirección IP y el puerto. No se necesita/recomienda ninguna otra medida de seguridad.
- Acceso de emergencia (EMRG) N/A. suiteHEART y suiteDXT no se utilizan en situaciones de emergencia.
- Servicio remoto (RMOT) El servicio se puede llevar a cabo de forma remota a través del método de acceso remoto especificado por el cliente (como el escritorio remoto), suiteHEART y suiteDXT no incluyen el acceso remoto por sí mismos.
- Detección/protección de malware (MLDP) N/A. suiteHEART y suiteDXT no incluyen detección o protección de malware. NeoSoft recomienda el uso de productos de seguridad de red para mayor protección.

Comenzar

Inicio y salida de la aplicación

El software suiteHEART® es una aplicación que se puede utilizar para el análisis, la revisión y la elaboración de informes de estudios de resonancia magnética (IRM) cardíaca. Este manual proporciona una explicación detallada de la interfaz de usuario del software suiteHEART® y el flujo de trabajo para realizar análisis cuantitativos de imágenes de RM cardíaca.


Inicio del software suiteHEART®

1. Inicie suiteDXT a través del acceso directo del escritorio.

NOTA: Las aplicaciones suiteDXT y suiteHEART® deben permanecer ejecutándose (simultáneamente) para facilitar la(s) transferencia(s) de archivos necesarios entre las aplicaciones.

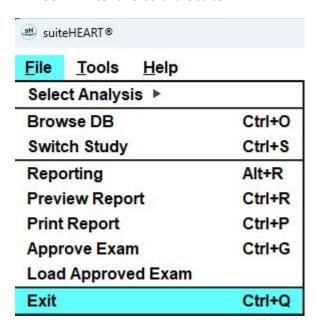
2. En la pantalla principal, vaya al menú desplegable Iniciar aplicación y seleccione el software suiteHEART®.

FIGURA 1. Iniciar aplicación

- 3. Seleccione un estudio de la lista de estudios y realice una de las siguientes acciones:
 - · Seleccione Iniciar.
 - Haga doble clic en el estudio.
- 4. Seleccione un grupo de estudios y seleccione Iniciar.

Utilice Archivo > Cambiar estudio para ver otros estudios.

NOTA: La resolución de la pantalla debe establecerse en 1920x1080 o superior (Landscape); 2160x3840 o superior (Portrait); de lo contrario, el software no se iniciará.

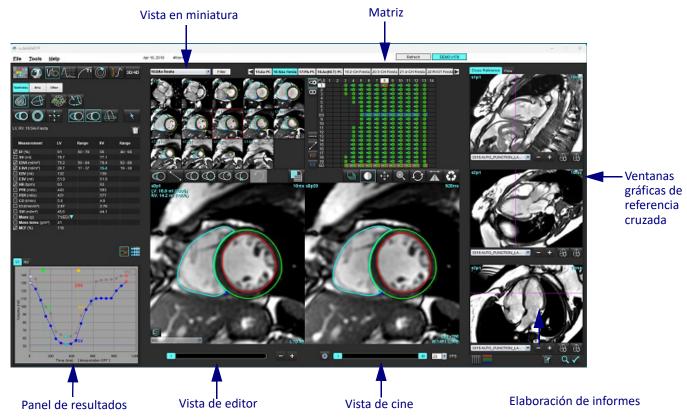


ADVERTENCIA: El uso de imágenes con filtros de intensidad de píxeles aplicados para el análisis puede producir resultados inexactos.

Salida del software suiteHEART®

Para salir de la aplicación, seleccione **Archivo > Salir** o haga clic en la X en la esquina superior derecha de la interfaz.

FIGURA 2. Cerrar el software suiteHEART®


Descripción general de la interfaz de usuario

Descripción general

Las interfaces del modo de análisis del software suiteHEART® se organizan de la siguiente forma:

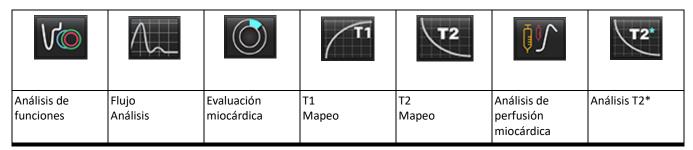

- Panel de resultados: acceder a herramientas de análisis para cada modo de análisis y la tabla de resultados
- Vista en miniatura: ver todas las ubicaciones de corte
- Vista de editor: modificar y revisar segmentos
- Matriz: disponible para Función y Análisis de perfusión miocárdica
- Vista de cine: ver las imágenes en una cinemática
- Referencia cruzada: 3 ventanas gráficas
- Elaboración de informes (Alt + R): Elaboración de informes de acceso

FIGURA 1. Interfaz de modo de análisis

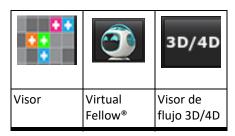
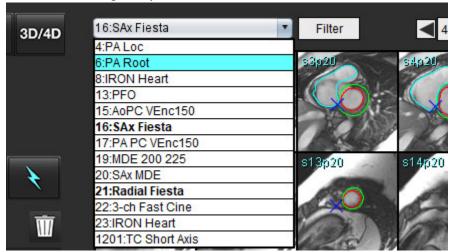

Modos de análisis/visor

Tabla 1: Modos de análisis

NOTA: El análisis de foramen oval permeable (FOP) se puede seleccionar desde el menú desplegable de archivos o si se presiona Ctrl+5 en el teclado.


Tabla 2: Modos de visor

Navegación por las series

Para ver imágenes o cambiar series dentro del estudio seleccionado, use los botones de flecha izquierda y derecha en la parte superior de la Vista de imagen. El menú desplegable del archivo de serie, ubicado a la izquierda del botón Filtro, también se puede usar para seleccionar la serie. Las series que tienen análisis o regiones de interés presentes se identificarán con texto en negrita, como se muestra en la Figura 2.

FIGURA 2. Navegación por las series

Ventana del editor y vista del modo

Al hacer clic con el botón derecho del ratón en una imagen en la Vista de imagen, se activarán las herramientas de manipulación de imágenes.

Tabla 3: Herramientas de manipulación de imágenes

Opciones del menú de Archivo

Seleccionar análisis - selecciona el modo de análisis (Función, Flujo, Evaluación miocárdica, Perfusión miocárdica, FOP, T2*,

Mapeo T1, Mapeo T2, 3D/4D y DENSE*)

Examinar BD – abre una base de datos local

Cambiar estudio – enumera los estudios disponibles para un acceso rápido

Elaboración de informes – Abre la interfaz de informes

Vista previa del informe – vista previa del informe formateado

Imprimir informe – imprime el informe

Aprobar examen – aprueba y bloquea un informe final con una firma

Cargar examen aprobado – restaura un informe abierto previamente

Salir – cierra la aplicación mientras guarda los resultados del análisis actual en una serie de captura secundaria (SCPT).

Opciones del Menú de herramientas

Ajustes >

Edición – abre el editor de ajustes para configurar los ajustes de software y plantilla

Importar – restaura los ajustes de usuario y los macros

Exportar – exporta todos los ajustes del usuario

Exportar >

Informe a DICOM – genera un informe basado en el análisis actual y lo guarda como una serie de captura secundaria (SCPT). Informe a Excel – genera una hoja de cálculo de Excel con resultados de análisis.

Informe a XML – exporta el informe como un archivo XML.

Imágenes a DICOM – guarda un cine DICOM de la serie seleccionada actualmente como un archivo SCPT.

Informe a... – Exporta los resultados a un sistema de elaboración de informes externo.

Imágenes a JPEG, AVI, etc. – exporta imágenes de series seleccionadas actualmente a cualquiera de los formatos de archivo seleccionados. Los formatos disponibles son: película comprimida de QuickTime, JPEG, TIFF, GIF, PNG o película AVI sin comprimir.

Datos a Matlab – exporta un archivo Mat en formato binario. (Se requiere un Acuerdo de investigación)

Datos de strain a Matlab – exporta un archivo Mat en formato binario. (Para realizar un análisis de strain es necesario un Acuerdo de investigación)

^{*}Se requiere un Acuerdo de investigación

Base de datos de informes – abre la interfaz de búsqueda de la base de datos

Alternar anotación – alterna la visualización de la anotación de ROI

Alternar grosor de línea – alterna el grosor de la línea de las anotaciones.

Alternar líneas de referencia cruzada – alterna líneas de referencia cruzada en imágenes.

Alternar FOV – alterna el campo de visión

Invertir ventana/nivel – invierte la vista de ventana/nivel

Opciones del menú de ayuda

Instrucciones de uso – Software suiteHEART® Instrucciones de uso

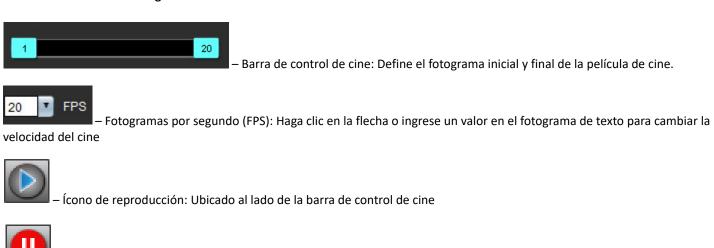
Teclas rápidas – funciones del teclado

Declaración de conformidad DICOM – suiteHEART® Software Declaración de conformidad DICOM

Acerca de suiteHEART® – información sobre la versión de la aplicación

Información reglamentaria – Directiva sobre dispositivos médicos

Controles de vista de editor


Para desplazarse por las fases, presione simultáneamente la tecla Ctrl y el botón del medio del ratón.

Los íconos de paso de imagen permiten la navegación de un corte a otro cuando la vista en miniatura está en corte o fases. La navegación por sectores también se puede realizar con la rueda central del ratón.

En su teclado, las teclas de flecha izquierda y derecha controlan la navegación entre cortes, y las teclas de flecha arriba y abajo controlan la navegación entre fases, según su configuración de ajuste.

NOTA: Los ejes X (corte) e Y (fase) se pueden intercambiar. Consulte Función en la página 34. Si se intercambian, la aplicación debe reiniciarse.

Controles de la vista de imagen

- Ícono de pausa: Ubicado al lado de la barra de control de cine

Ventanas gráficas de referencia cruzada

Las ventanas gráficas de referencia cruzada muestran la vista del eje largo de una imagen cuando la vista del eje corto se muestra actualmente en la ventana del editor de imágenes. La vista del eje largo es un corte ortogonal dentro de un ángulo de la imagen mostrada en la ventana gráfica del editor. Se proporciona un menú desplegable de todos los cortes ortogonales disponibles, junto con un botón para alternar la visualización de los indicadores de corte de referencia cruzada. Use el signo menos y más, o la rueda central del ratón, para navegar entre las ubicaciones de los cortes.

FIGURA 3. Selector de serie desplegable

Herramientas de manipulación de imágenes

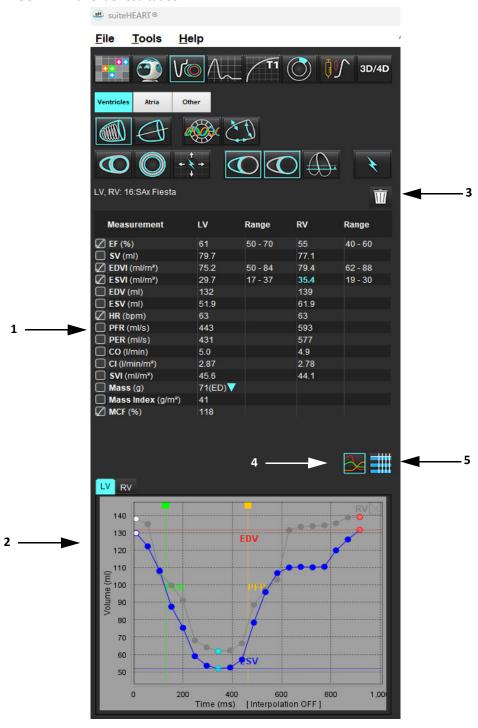
Tabla 4: Descripciones de las herramientas

	Alternar revisión de corte/fase
•	Ventana/Nivel – seleccione y use el botón del medio del ratón para realizar ajustes
	Escala de color - seleccione y use el botón del medio del ratón para realizar ajustes
	Paneo – seleccione y use el botón del medio del ratón para realizar ajustes
Q	Zoom – seleccione y use el botón del medio del ratón para realizar ajustes
Q	Rotación – seleccione y use el botón del medio del ratón para realizar ajustes
	Voltear horizontalmente – voltea la imagen horizontalmente
	Alcance total – aplica la manipulación de imágenes a todos los cortes
	Alcance actual a final – aplica manipulaciones de imagen desde el corte actual al corte final
	Solo alcance actual – aplica la manipulación de imágenes solo al corte actual
	Diseño de ventana gráfica: cambia el diseño del visor

Tabla 4: Descripciones de las herramientas

<u>.</u>	Modo de comparación: cambia al modo de comparación
	Modo de revisión: cambia al modo de revisión
	Mostrar líneas de referencia cruzada: alterna las referencias cruzadas de las líneas activa/desactiva
	Superposición de mapa de colores: activa/desactiva la clasificación de sectores del mapa de colores
	Restablecer – restablece los valores de V/N, Paneo, Zoom y Rotación a los valores predeterminados, según la configuración del alcance
Q ₀	Región de interés – proporciona mediciones de área y circunferencia
X	Medición en forma de cruz – proporciona muestreo de datos de un solo píxel
	Medición lineal – proporciona la medición de una distancia en línea recta
✓ A	Etiqueta – proporciona la adición de anotaciones de usuario en la ventana del Editor
A.	Ángulo – proporciona medición de ángulo
	Encontrar función – herramienta de referencia cruzada que identifica y muestra automáticamente las imágenes que contienen la misma ubicación
つ	Deshacer – funcionalidad de deshacer disponible para la edición de ROI
Refresh	Actualizar – haga clic en el botón para actualizar la Vista de imagen con imágenes recién conectadas en red o para actualizar los modos de análisis.
Filter	Filtro – ordena las series por tipo de secuencia de pulsos según el modo de análisis. Se puede anular la selección seleccionando TODOS. Los filtros se pueden configurar en Ajustes. El botón de filtro estará verde si hay un filtro en uso.

Teclas rápidas


Acción	Tecla rápida	Acción	Tecla rápida
Zoom de imagen	Ctrl + Botón central del ratón	T2*	Ctrl+6
Girar imagen	Ctrl + Mayús + Botón central del ratón	Mapeo T1	Ctrl+7
Panorámica de imagen	Mayús + Botón central del ratón	Mapeo T2	Ctrl+8
Ventana/Nivel	Alt + Botón central del ratón	Visor de flujo 3D/4D	Ctrl+9
Reproducir/Pausar cine	Barra espaciadora	Navegar entre cortes*	Teclas de flecha izquierda y derecha
Desplazamiento por las fases	Ctrl + rueda central del ratón	Navegar entre fases*	Teclas de flecha arriba y abajo
Desplazamiento por sectores	Rueda del ratón central	Navegar entre los cortes de Virtual Fellow®	Tecla Z y A para el corte siguiente y el anterior
Elaboración de informes	Alt + R	Anotaciones genéricas	
Volver a seleccionar todas las imágenes para verlas	Ctrl + A	Lineales	Shift+1
Base de datos de informes	Ctrl + D	Retículo	Shift+2
Ajustes de edición	Ctrl + E	Región de interés	Shift+3
Alternar campo de visión(FOV)	Ctrl + F	Etiqueta	Shift+4
Aprobar examen	Ctrl + G	Ángulo	Shift+5
Invertir Ventana/Nivel	Ctrl + I	Herramientas de edición de la ROI	
Anotación de línea gruesa	Ctrl + L	Copiar ROI	Ctrl + C
Examinar BD	Ctrl + O	Pegar ROI	Ctrl + V
Imprimir reporte	Ctrl + P	Suavizar ROI	Ctrl + S
Cerrar la aplicación o salir	Ctrl + Q	Girar ROI verticalmente	Teclas W y S
Vista previa del informe	Ctrl + R	Girar ROI horizontalmente	Teclas A y D
Cambiar estudio	Ctrl + S	Generar una esquina spline de puntos	Alt + Botón izquierdo del ratón
Alternar anotación	Ctrl + T	Eliminar un punto (spline de puntos)	ELIMINAR + Cursor sobre un punto
Alternar líneas de referencia cruzada	Ctrl + X	Herramientas de edición del Flujo Visor 3D/4D	
Deshacer	Ctrl + Z	Rotación 3D	Ctrl + Alt + Botón central del ratón
DENSO	Ctrl+0	Zoom de imagen	Ctrl + Botón central del ratón
Función	Ctrl+1	Ventana/Nivel	Alt + Botón central del ratón
Flujo	Ctrl+2		
Evaluación miocárdica	Ctrl+3		
Perfusión miocárdica	Ctrl+4		
FOP	Ctrl+5		

^{*}La configuración activa dependerá de lo que se elija en Ajustes.

Panel de resultados

El panel de resultados está disponible para cada modo de análisis.

FIGURA 4. Panel de resultados

1. Tabla de resultados, 2. Pantalla del gráfico 3. Eliminar, 4. Gráficos, 5. Tablas

Tabla de resultados

Los resultados de las mediciones pueden volver a ordenarse y configurarse en ajustes (consulte Pestaña Impresión en la página 42). La tabla de mediciones se puede volver a ordenar seleccionando una fila y arrastrándola a una nueva posición. El orden de la tabla siempre será el orden en ajustes de manera predeterminada para todos los nuevos estudios. Seleccione o anule la selección de una medición, dentro de lo incluido en el informe, haciendo clic en la casilla junto a Mediciones.

FIGURA 5. Tabla de resultados

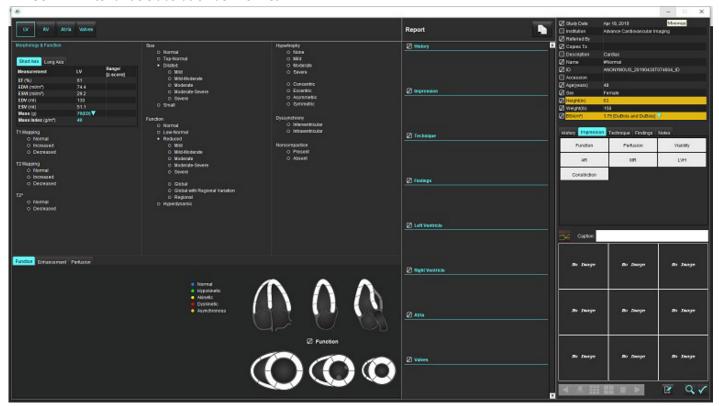
Measurement	LV	Range	RV	Range
	61	58 - 76	56	53 - 77
SV (ml)	79.0	59 - 115	77.2	58 - 109
EDVI (ml/m²)	74.4	59 - 93	79.3	57 - 94
ESVI (ml/m²)	29.2	16 - 34	35.2	14 - 40
EDV (ml)	130	90 - 171	139	87 - 172
ESV (ml)	51.1	25 - 62	61.7	20 - 72
HR (bpm)	63		63	
PFR (ml/s)	440	231 - 805	564	137 - 598
PER (ml/s)	413		576	
CO (I/min)	5.0		4.9	
CI (I/min/m²)	2.85		2.78	
SVI (ml/m²)	45.2	39 - 63	44.1	37 - 61
Mass (g)	70(ED)▼	71 - 143		
Mass Index (g/m²)	40	48 - 77		
✓ MCF (%)	119		W.	

NOTA: Para modificar o introducir la frecuencia cardíaca, haga clic directamente sobre la tabla.

Resultados de gráficos y tablas

Los resultados se pueden mostrar como un gráfico o en formato tabular al hacer clic en el ícono deseado ubicado en la esquina inferior derecha de la Vista de análisis.

FIGURA 6. Gráfico (izquierda) y tabla (derecha)


Tabla 5: Herramientas de análisis

ROI del endocardio ventricular izquierdo	ROI de endocardio VI de eje largo
ROI del epicardio ventricular izquierdo	ROI de epicardio VI de eje largo
ROI del endocardio ventricular derecho	ROI septal ventricular izquierdo
ROI del epicardio ventricular derecho	ROI local del ventrículo izquierdo
Anillo de la válvula mitral	ROI de la sangre acumulada del ventrículo izquierdo
Ánulo de la válvula tricúspide	
Punto de inserción ventricular derecha	
ROI del músculo papilar ventricular izquierdo	
ROI del músculo papilar ventricular derecho	
ROI auricular Izquierdo	
ROI auricular derecho	
ROI de endocardio VD de eje largo	
ROI de epicardio VD de eje largo	

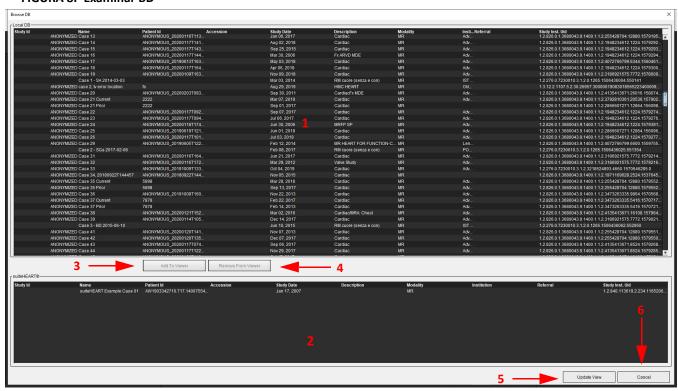
Elaboración de informes

Presione simultáneamente Alt + R para abrir la interfaz de elaboración de informes. Consulte Elaboración de informes en la página 167 si necesita más información.

FIGURA 7. Interfaz de elaboración de informes

– Elaboración de informes: Se utiliza para abrir la interfaz de Elaboración de informes o el modo de análisis

– Informe de vista previa: Se utiliza para obtener una vista previa de un informe



– Aprobar examen: Utilizado para la firma del informe

Examinar BD

La ventana Examinar BD proporciona una vista de los estudios actuales de la base de datos local. Hay controles que permiten elegir qué estudios ver o agregar a la lista de estudios de cambio.

FIGURA 8. Examinar BD

- 1. Listado de la base de datos local, 2. Visor de la base de datos del software suiteHEART®, 3. Botón Añadir al visor, 4. Eliminar del visor,
- 5. Vista de actualización, 6. Cancelar

Características de Examinar BD

La función Examinar BD siempre tiene como predeterminada la base de datos local.

- 1. Listado de base de datos local muestra los exámenes almacenados en la base de datos local.
- 2. Visor de la base de datos del software suiteHEART® muestra los exámenes que se encuentran en la base de datos actual del software suiteHEART®.
- 3. Agregar al visor agrega el examen seleccionado de la base de datos local (que se muestra en la parte superior de la ventana) al área de visualización de la base de datos del software suiteHEART®.
- 4. Eliminar del visor elimina el examen del área de visualización de la base de datos del software suiteHEART®.
- 5. Actualizar vista cierra la ventana Examinar base de datos y lleva los exámenes en el área de listado visible al visor de la aplicación. Se utiliza para llenar la ventana Cambiar estudio.
- 6. Cancelar cierra la ventana Examinar base de datos sin cambios en la lista.

Procedimiento de Examinar BD

Los estudios se pueden ver seleccionándolos de la base de datos local, agregándolos a la lista del visor de la base de datos del software suiteHEART® y haciendo clic en **Actualizar vista**.

Agregar estudios a la lista Cambiar estudio del software suiteHEART®

- 1. Haga clic en Archivo > Explorar base de datos.
- 2. Localice el estudio en el visor de la base de datos y haga clic en el examen para resaltarlo.
- 3. Haga clic en Agregar al visor.
- 4. Haga clic en Actualizar vista.
- 5. El estudio ahora aparece en la lista Cambiar estudio del software suiteHEART®.

Eliminar exámenes de la lista Cambiar estudio del software suiteHEART®

- 1. Haga clic en Archivo > Explorar base de datos.
- 2. Localice el estudio y luego haga clic en Eliminar del visor.
- 3. Haga clic en Actualizar visor.

PRECAUCIÓN: No elimine el estudio abierto actualmente en el software suiteHEART®.

Los estudios deben cargarse en el software suiteHEART® antes de que puedan mostrarse en el Visor. Consulte Procedimiento de Examinar BD en la página 20 para aprender a completar la lista Cambiar estudio.

Cambiar estudio dentro del software suiteHEART®

- 1. Haga clic en Archivo > Cambiar estudio.
 - La ventana Estudios disponibles se muestra con una lista de todos los exámenes que se cargaron previamente mediante el procedimiento Examinar BD.
- 2. Seleccione el estudio.
 - Si elige no cambiar los estudios después de abrir la ventana Cambiar estudio, haga clic en cualquier lugar fuera de la ventana para volver a la aplicación.

Herramientas de gestión de imagen

Visor

El visor permite la revisión rápida del estudio con referencias cruzadas. La interfaz del visor muestra la lista de las series que se han adquirido para el estudio seleccionado con cada serie mostrada en una ventana gráfica. Se pueden crear nuevos tipos de series para análisis y revisión dentro de la interfaz del visor. Los protocolos de visualización definidos por el usuario para series adquiridas de rutina también se pueden crear para acelerar la revisión del estudio.

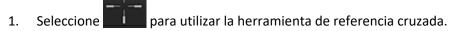
NOTA: La exportación de imágenes solo se puede realizar en los modos de análisis.

FIGURA 1. Visor Tools Help + Ax FIESTA LAx Loc (P 10.64) Ao Root Loc (A 6.12) PA Root (L 33.63) Ao Root (\$ 57.42) + SAx Loc Ao Root (L 30.55) Ao(BCT) PC (\$ 103.11) PA PC (A 1.28) Ao PC (\$ 68.75) L 95.97 L 100.98 PA PC (A 1.28) P 22.25 4-CH Fiesta (\$ 49.22)

1. Filtro de imagen, 2. Listado de series/imágenes, 3. Ventanas gráficas de imágenes, 4. Referencia cruzada, 5. Guardar serie, 6. Referencia cruzada,

20 FPS

7. Encontrar función, 8. Herramientas de medición


Imagen/Navegación en serie

Haga clic en una serie y utilice la función "Repág" o "Avpág" del teclado para navegar por las ubicaciones de los cortes dentro de la serie.

Navegue a la siguiente serie presionando la tecla de flecha derecha en el teclado y la de flecha izquierda para navegar a la serie anterior.

Al navegar a una serie de múltiples fases, estas se muestran en un diseño automático, mientras que las series de solo una fase se muestran en un diseño de 1x1.

Encontrar función*

El cursor púrpura es el cursor primario que se puede posicionar en la imagen.

2. Pulse la tecla Ctrl y seleccione la herramienta de referencia cruzada para activar el cursor primario. Todas las ubicaciones de corte cerrado se muestran de manera automática.

La vista principal se rellenará solo con aquellos cortes en los que el cursor verde secundario se calculó cerca del cursor púrpura primario.

NOTA: Las anotaciones cruzadas secundarias verdes aparecen en las ventanas de visualización que contienen imágenes **no paralelas** y en los puntos que se calculan a una distancia 3D de 10 mm del cursor principal.

NOTA: Las anotaciones cruzadas secundarias verdes aparecen en las ventanas de visualización que contienen imágenes **paralelas** y en los puntos que se calculan a una distancia 3D de 5mm del cursor principal.

Expandir/contraer serie

Para expandir todas las series, haga clic en (+); para contraer haga clic en (-).

FIGURA 2. Expandir serie

Tecla rápida

Función	Acción
Volver a seleccionar todas las imágenes para verlas	Ctrl + A

^{*}Número de solicitud de patente provisional en los Estados Unidos: 62/923, 061
Título: Method and System for Identifying and Displaying Medical Images (Método y sistema para la identificación y visualización de imágenes médicas) Inventor(es): Wolff et al.

Funcionalidad del visor

Crear una nueva serie

El visor permite la creación de tipos de series que se pueden utilizar para la Función, la Evaluación miocárdica, la Perfusión miocárdica, T2*, el Mapeo T1, el Mapeo T2 solo para la revisión (personalizada). Las series que se creen se agregarán al listado de series para ese estudio y estarán disponibles para su visualización y análisis dentro de la aplicación de software suiteHEART®.

NOTA: Para que una serie sea válida para el análisis, cada ubicación del corte debe tener el mismo número de fases, los mismos parámetros de adquisición y la prescripción del plano de exploración.

ADVERTENCIA: El usuario es responsable de crear nuevas series de análisis que contengan las imágenes correctas para analizar. Se pueden analizar series formadas incorrectamente, pero podrían producir resultados inexactos. El usuario debe estar debidamente capacitado en análisis cardíaco y debe conocer las ubicaciones de corte copiadas en la nueva serie. No elimine las imágenes originales que se utilizaron para la importación DICOM.

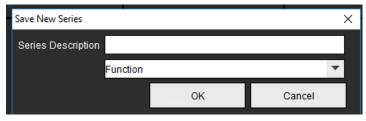

- 1. Seleccione la serie o las ubicaciones de corte deseadas de la lista de series.
- 2. Seleccione un grupo de series o ubicaciones de cortes realizando las combinaciones clic+Shift o Ctrl+clic para agregar una sola serie o ubicación del corte.
- 3. Hacer clic y arrastrar permite ordenar las imágenes dentro de las ventanas gráficas.
- 4. Para eliminar una imagen de una ventana gráfica, seleccione la ventana gráfica y presione la tecla Eliminar en el teclado.
- 5. Seleccione del panel Guardar serie Figura 3.

FIGURA 3. Panel Guardar serie

- Escriba un nombre de serie para la descripción de la serie de la aplicación.
- 7. Seleccione el tipo de aplicación de serie apropiada del menú desplegable (Figura 4). Si se selecciona **Personalizado**, las imágenes con diferentes planos de exploración y tipos de secuencia se pueden guardar como una serie.

FIGURA 4. Guardar nueva serie

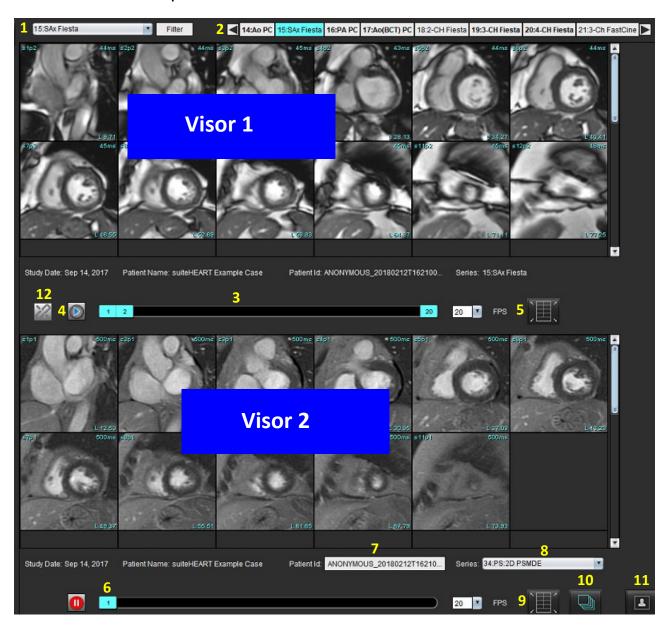
Ver protocolos

Solo están disponibles a pedido de NeoSoft.

Elaboración de informes

Para acceder a la función Informes o volver al visor, haga clic en

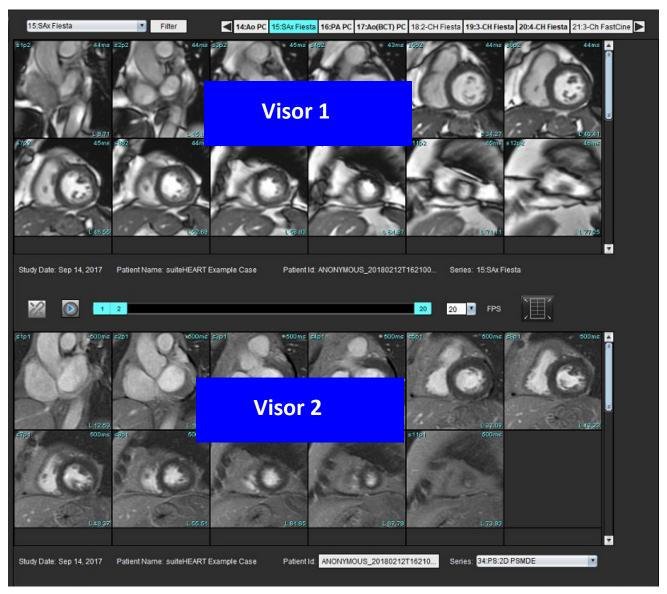
Modo de comparación


El modo de comparación le permite revisar imágenes/series de un examen actual, o de un examen anterior, simultáneamente dentro de la misma interfaz.

NOTA: Las imágenes enviadas a un informe procedentes del examen anterior en modo de comparación estarán en formato de mapa de bits. En estas imágenes no se podrán realizar manipulaciones de imágenes.

ADVERTENCIA: Antes de la revisión o comparación de exámenes o series dentro de un examen, confirme visualmente toda la información del indicador del paciente del examen para ambos visores.

FIGURA 5. Modo de comparación del visor



Visor	Atención médica	Descripción
Visor 1 1		Serie desplegable
	2	Selector de serie
	3	Línea de indicador de examen del paciente
		actualmente visto
	4	Controles de imagen
	5	Selecciones de diseño de ventana gráfica
Visor 2 6 Línea de		Línea de indicador de examen del paciente
		actualmente visto
	7	Selector de examen
	8	Selector de serie
	9	Selecciones de diseño de ventana gráfica
Ambos visores	10	Cambiar la configuración del alcance
	11	Alternar para el modo de revisión
	12	Alternar cine sincronizado

Flujo de trabajo de muestra

- 1. Haga doble clic en la ventana del editor en cualquier modo de análisis.
- 2. Seleccione para dividir la interfaz en dos visores, como se muestra en la Figura 6.

FIGURA 6. Ver en modo de comparación

- 3. Cambie la serie en el Visor 1 utilizando el menú desplegable de selección de serie o las flechas derecha/izquierda.
 - Este visor superior siempre muestra el estudio actual que se ha lanzado previamente.
- 4. En el Visor 2, use el menú desplegable de series para elegir una serie diferente, dentro del mismo examen, para compararla con la que se muestra en el Visor 1.
 - Cuando se selecciona una ventana gráfica en cualquier visor y si la división es paralela, como una serie de eje corto, se resaltará la división correspondiente, según la ubicación de la división.

FIGURA 7. Serie desplegable, Visor 2

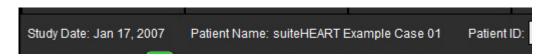

5. Use el selector de exámenes para comparar un examen diferente en el Visor 2 con el examen actual que se muestra en el Visor 1.

FIGURA 8. Selector de examen, Visor 2

6. Confirme la selección de examen adecuada, comprobando la información del indicador de examen para ambos visores.

FIGURA 9. Información del indicador de examen

- 7. Al hacer clic con el botón derecho en cualquiera de los visores, se abrirán las herramientas de manipulación de imágenes.
 - La selección del alcance se aplica a ambos visores.

NOTA: La ubicación de la imagen desde la pestaña Imágenes no será válida si la imagen es de un estudio diferente.

NOTA: Si se selecciona una serie de cine en ambos visores y ambas series tienen el mismo número de fases, haga clic

para sincronizar las vistas de cine.

Definición de preferencias

Seleccione Herramientas > Preferencias en la barra del menú de la interfaz del software suiteHEART® para que se muestren tres opciones:

- Editar
- Importar
- Exportar

IMPORTANTE: Es aconsejable configurar los ajustes del usuario antes de analizar el primer caso sobre el cual se va a elaborar un informe. Para que se guarden los cambios en las preferencias, cierre el examen actual y luego cierre y vuelva a iniciar suiteDXT.

Configuración de preferencias

Pestaña Global: pueden personalizarse las siguientes preferencias:

- Informe
- Visor
- Virtual Fellow[®]
- Aprobadores de informes autorizados
- General
- Flujo
- Temporizador inactivo
- Función
- Evaluación miocárdica
- Filtro de serie
- Exportar (Imagen/Vídeo)

Pestaña Plantilla: crear plantillas para rangos de parámetros de resultados, que se usarán para informes.

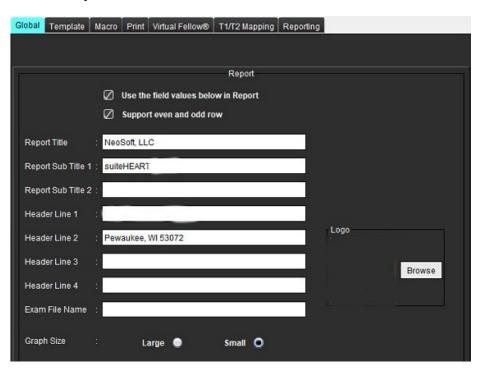
Pestaña Macro: crear textos predefinidos para secciones de informes de Impresión, Técnicas, Historial y Hallazgos.

Pestaña Impresión: ordenar y seleccionar parámetros de resultados para el informe.

Pestaña Virtual Fellow®: seleccionar ajustes de vista.

Pestaña de Mapeo T1/T2: seleccionar ajustes de vista y análisis.

Pestaña de Elaboración de informes: modificar selecciones de texto a través del menú y configurar rangos categóricos para la función de rellenado automático.


Pestaña Global

Si se selecciona Reiniciar en la esquina superior derecha de la pestaña, se borrarán todas las selecciones del usuario.

Informe

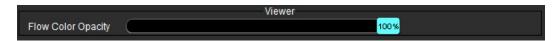
Configure la información del encabezado que aparece en todos los informes.

FIGURA 1. Ajustes de informe

Selecciones de los ajustes de informe

- 1. En la barra del menú, seleccione Herramientas > Preferencias > Editar.
- 2. Seleccione la pestaña Global.
- 3. Coloque el cursor en el campo deseado del panel **Informe** e ingrese la información.

Los títulos, los encabezados y el logotipo aparecerán en un informe con el tamaño de papel especificado. Para omitir esta información del informe, anule la selección de la casilla de verificación "Usar los valores de campo en el informe a continuación". Esto tendrá efecto para todos los informes del paciente que se impriman.


Si marca "admitir filas pares e impares", se resaltarán las filas de resultados en la interfaz y en el informe.

4. Para insertar un logotipo de sitio en el informe, prepare el archivo en formato jpeg, png o gif y guárdelo en el disco duro o CD-ROM. Seleccione **Examinar** en la sección Logotipo y busque el archivo desde la ventana del navegador del sistema. Seleccione el archivo de logotipo adecuado y seleccione **Abrir**.

El logotipo debería aparecer ahora en el panel de preferencias del informe.

- 5. Haga clic en **Nombre del archivo del examen** para configurar el nombre del archivo del informe de exportación.
- 6. Seleccione Guardar y salir.

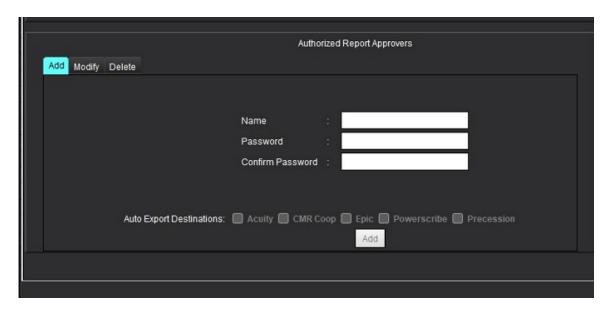
Seleccione Cancelar para salir sin guardar ni aceptar ningún cambio.

- 1. En la barra del menú, seleccione Herramientas > Preferencias > Editar.
- 2. Use la barra deslizadora para ajustar la superposición de color de velocidad en las imágenes de contraste de fases.

 Para eliminar la superposición de color, establezca la opacidad en 0 %.

Virtual Fellow®

FIGURA 2. Preferencias de Virtual Fellow®


- 1. En la barra del menú, seleccione Herramientas > Preferencias > Editar.
- 2. Seleccione la pestaña Global.
- 3. Marque Abrir estudio en Virtual Fellow® para abrir directamente el estudio con la aplicación Virtual Fellow®.
- 4. Seleccione Guardar y salir.

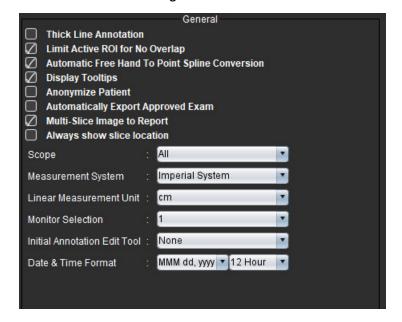
Seleccione **Cancelar** para salir sin guardar ni aceptar ningún cambio.

Aprobadores de informes autorizados

La aplicación tiene una opción de aprobación de informes que bloquea el informe final. Una vez aprobado, el informe no puede modificarse. Puede añadir, modificar y eliminar borradores.

FIGURA 3. Aprobadores de informes autorizados

Gestión de aprobadores de informes


- 1. En la barra del menú, seleccione Herramientas > Preferencias > Editar.
- 2. Seleccione la pestaña Global y coloque el cursor en el panel Aprobadores de informes autorizados.
- 3. Seleccione la pestaña Agregar para agregar un nombre de usuario a la lista de aprobadores autorizados.
 - Ingrese el nombre de usuario.
 - Ingrese la contraseña dos veces.
 - Seleccione Agregar.
- 4. Seleccione la pestaña Modificar para cambiar la contraseña de un usuario en la lista de aprobadores autorizados.
 - Seleccione el usuario que desea modificar.
 - Ingrese la contraseña anterior.
 - Ingrese la nueva contraseña dos veces.
 - Seleccione Aplicar.
- 5. Seleccione la pestaña Eliminar para eliminar un usuario de la lista de aprobadores autorizados.
 - Seleccione el(los) usuario(s) que desea eliminar.
 - Seleccione Eliminar.
- 6. Seleccione los destinos de exportación automática apropiados.

La exportación se realizará automáticamente cuando se lleve a cabo un «examen aprobado».

- 7. Seleccione Guardar y salir.
 - Seleccione **Cancelar** para salir sin guardar ni aceptar ningún cambio.

General

FIGURA 4. Preferencias generales

Selecciones de preferencias generales

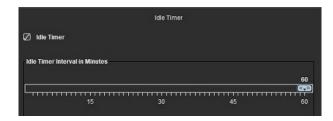
- 1. En la barra del menú, seleccione Herramientas > Preferencias > Editar.
- 2. Seleccione la pestaña Global.
- 3. Marque la casilla de verificación Anotación de línea gruesa para mostrar la anotación como líneas gruesas.

- 4. Marque **Limitar ROI activa para no superponer.** Cuando se marca esta opción, las ROI que no se seleccionan en ese momento son las dominantes; y cuando se desmarca, la ROI que se está editando es la dominante.
- 5. Marque **Mano alzada automática a conversión en anotación de spline de puntos** para convertir automáticamente una ROI de mano alzada a spline de puntos.
- 6. Marque Mostrar ayuda emergente para mostrar la ayuda emergente de la interfaz.
- 7. Marque la casilla de verificación **Anonimizar paciente** para ocultar el nombre y la identificación del paciente en el informe.
 - Los nombres de todos los pacientes se mostrarán como "anónimos" y la identificación estará en blanco. Estos cambios se aplicarán al informe y a la Vista de imagen.
- 8. Marque **Exportar automáticamente el examen aprobado** para exportar el informe como un archivo DICOM después de su aprobación.
- 9. Marque **Imagen de varios cortes a Informe** para agregar una opción de clic con el botón derecho del ratón para agregar un grupo de imágenes de eje corto de múltiples fotogramas.
- 10. Marque **Mostrar siempre la ubicación del corte** para que se muestre la ubicación del corte cuando se desactivan los anuncios.
- 11. Establezca la selección del Alcance para la manipulación de imágenes en el menú desplegable de archivo.
- 12. Configure el Sistema de medición, ya sea imperial o métrico, en el menú desplegable de archivo.
- 13. Configure la Unidad de medida lineal a cm o mm.
- 14. Configure la **Selección del monitor** en el menú desplegable de archivo si se utiliza un monitor doble.
- 15. Configure el **Modo de edición de anotación inicial** en el menú desplegable de archivo. Entre las selecciones se incluye Ninguna, Herramienta Retoque o Herramienta de extracción.
- 16. Configure el **Formato de fecha y tiempo** en el menú desplegable de archivo.

Flujo

FIGURA 5. Preferencias de flujo

Selecciones de preferencias de flujo

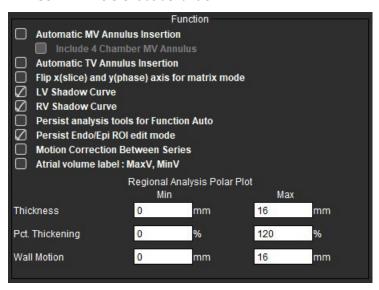

- 1. En la barra del menú, seleccione Herramientas > Preferencias > Editar.
- 2. Seleccione la pestaña Global.
- 3. Marque la casilla de verificación **Corrección automática de línea de base** para realizar automáticamente la corrección automática de errores de fase para el contraste de fase 2D y 4D.
- 4. Marque Modo regurgitante: Automático para que calcule automáticamente el flujo negativo neto (por debajo del eje x).

- 5. Si marca **Reemplazar la ROI editada por el usuario**, se reemplazarán las ROI editadas por el usuario si se realiza la propagación.
- 6. Marque **Mostrar Herramientas para edición** para mostrar las herramientas de edición directamente en la ventana gráfica de la imagen.
- 7. Defina las etiquetas de categoría de **Flujo 1** o **Flujo 2** escribiendo una nueva etiqueta. Estas etiquetas aparecerán como información sobre herramientas en la interfaz de flujo.
- 8. Seleccione la **Unidad de flujo** adecuada de ml/latido o l/min o ninguno del menú desplegable de archivo.
- 9. Seleccione el **Método predeterminado** para mantener el método de cálculo para el panel de Flujo integrado.
- 10. Use la barra deslizante para ajustar la **Opacidad de color de flujo**.
 - Para eliminar la superposición de color, establezca la opacidad en 0 %.
- 11. Seleccione Guardar y salir.
 - Seleccione Cancelar para salir sin guardar ni aceptar ningún cambio.

Temporizador inactivo

El panel del temporizador inactivo establece el intervalo en minutos para que la aplicación se cierre después de un período de inactividad establecido.

FIGURA 6. Configuración de temporizador inactivo



Selecciones del temporizador inactivo

- 1. En la barra del menú, seleccione Herramientas > Preferencias > Editar.
- 2. Seleccione la pestaña Global y coloque el cursor en el panel del Temporizador inactivo.
- 3. Seleccione la casilla de verificación Temporizador inactivo para habilitar la función de temporizador inactivo.
- 4. Arrastre el marcador de intervalo de temporizador inactivo al tiempo deseado en minutos.
- 5. Seleccione **Guardar y salir** para almacenar sus selecciones.
 - Seleccione Cancelar para salir sin guardar ni aceptar ningún cambio.

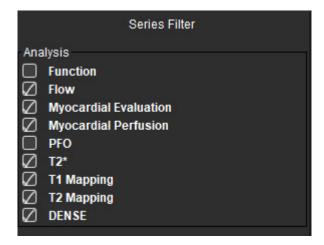
Función

FIGURA 7. Preferencias de función

- 1. En la barra de menú Vista de imagen, seleccione Herramientas > Preferencias > Editar.
- 2. Seleccione la pestaña Global.
- 3. Para insertar automáticamente el anillo para una interpolación basal, marque Inserción automática del anillo VM e Incluir anillo de la VM de 4 cámaras. Marque Inserción automática del anillo VT.
- 4. Verifique los ejes de volteo X (corte) e Y (fase) para el modo matriz para intercambiar el eje.
- 5. Marque **Activar VI** o **Curva de sombra VD** para mostrar ambas curvas.
- 6. Verifique las **Herramientas de análisis de Persistencia para la función Automática** para realizar la segmentación automática.
- 7. Marque el modo de edición ROI endo/epi de Persistencia para realizar la edición.
- 8. Marque **Corrección de movimiento entre cortes** para acceder a esta función en Análisis de funciones; consulte Corrección de movimiento entre series en la página 71.
- 9. Marque Etiqueta de volumen auricular: Vmáx., Vmín. para cambiar las etiquetas volumétricas.
- 10. Configure los límites máximos y mínimos de Diagrama polar del análisis regional.
- 11. Seleccione **Guardar y salir** para almacenar sus selecciones.
 - Seleccione **Cancelar** para salir sin guardar ni aceptar ningún cambio.

Evaluación miocárdica

FIGURA 8. Preferencias de evaluación miocárdica


- 1. En la barra del menú, seleccione Herramientas > Preferencias > Editar.
- 2. Seleccione la Pestaña Global.
- 3. Para definir las etiquetas de mediciones, consulte Definir etiquetas de mediciones de resultados en la página 115.
- 4. Seleccione Guardar y salir.

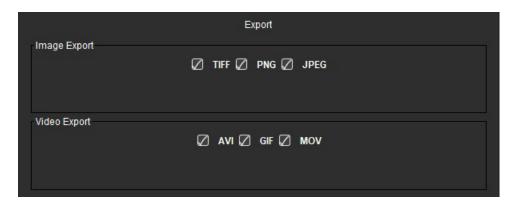
Seleccione Cancelar para salir sin guardar ni aceptar ningún cambio.

Filtro de serie

Según los tipos de modo de análisis, se puede aplicar un filtro de serie para acelerar la selección de la serie adecuada para el análisis. Las preferencias de filtro también se pueden seleccionar durante el análisis, haciendo clic en el botón de filtro en el panel principal, encima de la vista en miniatura.

FIGURA 9. Preferencias de filtro

Configurar preferencias de filtro


- 1. En la barra del menú, seleccione Herramientas > Preferences > Editar.
- 2. Seleccione la pestaña Global.
- 3. Haga clic en la selección adecuada de activación/desactivación para cada tipo de análisis.
- 4. Seleccione Guardar y salir.
 - Seleccione Cancelar para salir sin guardar ni aceptar ningún cambio.

NOTA: Si se ha aplicado un filtro de serie y la serie requerida no está presente, aparecerá un mensaje: "No hay series asociadas con el tipo de análisis seleccionado". Al hacer clic en Aceptar, se deshabilitará el filtro y se mostrarán todas las series del estudio.

Exportar (Imagen/Vídeo)

El panel de Exportación le permite seleccionar los formatos de imagen para exportar datos de imagen y vídeo. La función de exportación le permite crear películas AVI sin comprimir, películas QuickTime comprimidas, archivos GIF, JPEG, TIFF y PNG de los datos de imagen.

FIGURA 10. Ajustes de exportación de imagen/vídeo

Selecciones de exportación

- 1. En la barra del menú, seleccione Herramientas > Preferencias > Editar.
- 2. Seleccione la pestaña **Global** y coloque el cursor en el panel **Exportar**.
- 3. Seleccione los tipos de datos de imagen correspondientes.
- 4. Seleccione **Guardar y salir** para guardar las selecciones.

Seleccione **Cancelar** para salir sin guardar ni aceptar ningún cambio.

Pestaña Plantilla

La aplicación proporciona una herramienta para crear plantillas basadas en rangos normales definidos por el usuario y especificados por edad y sexo. El cálculo y los informes de las puntuaciones Z se basa en un modelo definido por el usuario. Consulte las referencias recomendadas.

FIGURA 11. Pestaña Plantilla

Consideraciones

Antes de comenzar el análisis, la plantilla definida por el usuario debe seleccionarse desde la interfaz principal. Haga clic en **Predeterminado**, en la esquina superior derecha, y seleccione la plantilla que se utilizará. Cambiar la plantilla después de realizar el análisis aplicará el rango de Normal o puntuación Z aplicado en la plantilla.

FIGURA 12. Cambiar plantilla

NOTA: Los estudios importados con análisis suiteHEART anteriores pueden mostrar el nombre de la plantilla utilizada para ese estudio. Es posible que esa plantilla no esté disponible para otros estudios.

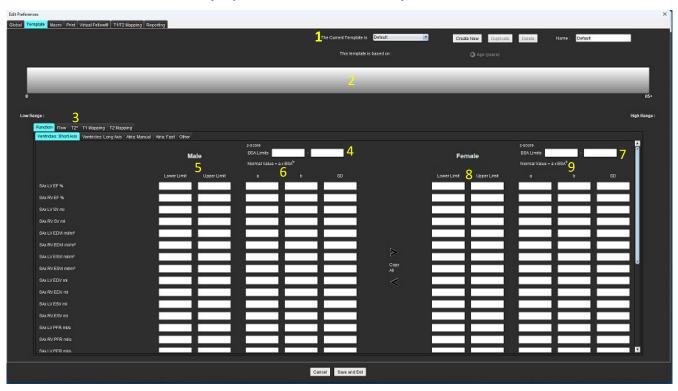
Se recomienda que, si utiliza dos sistemas para el análisis, cree el archivo de ajustes de plantilla en el primer sistema y luego lo importe al segundo sistema. Los archivos de ajustes de plantilla importados desde un sistema diferente sobrescribirán los ajustes de plantilla si ya se han creado en ese sistema.

Crear una plantilla

ADVERTENCIA: Validar los valores ingresados de los rangos normales y los parámetros de las puntuaciones Z es responsabilidad exclusiva del usuario. Confirme todas las entradas antes del análisis. Los valores incorrectos pueden conducir a un diagnóstico erróneo.

Todas las plantillas nuevas se crean inicialmente duplicando una plantilla predeterminada. La plantilla predeterminada no es editable.

- 1. Seleccione Herramientas > Preferencias > Editar.
- 2. Seleccione la pestaña Plantilla.
- 3. Haga clic en **Crear nueva** o, para duplicar una plantilla, haga clic en **Duplicar**. La edad es la predeterminada.


FIGURA 13. Crear selecciones de plantillas

4. Escriba un nuevo nombre para la plantilla.

Al ingresar un nombre nuevo, se actualiza La plantilla actual es, que está en el menú desplegable.

FIGURA 14. Pestaña Plantilla de ejemplo: se muestra la función de eje corto

- 1. Plantilla actual, 2. Barra de rango de edad, 3. Parámetros de resultados por tipo de análisis, 4. Límites ASC de la puntuación Z masculinos,
- 5. Límites superior e inferior masculinos, 6. Parámetros de la puntuación Z masculinos, 7. Límites ASC de la puntuación Z femeninos,
- 8. Límites superior e inferior femeninos, 9. Parámetro de la puntuación Z femeninos
- 5. Seleccione el tipo de análisis de la aplicación que desee para crear una plantilla.
- 6. Si se van a utilizar rangos de edad, haga clic derecho en la Barra de rangos de edad para crear un divisor de rangos de edad.
 - Puede arrastrar las barras divisoras del rango de edad y ajustarlas al rango de edad deseado.
 - Se pueden crear varias barras divisorias de rango de edad.
 - Las barras divisorias de rango de edad se pueden eliminar colocando el cursor cerca de la barra y seleccionando **Eliminar** rango en el menú derecho del ratón.
- 7. Introduzca los valores del rango normal para el modo de análisis apropiado, así como los límites inferior y superior.
- 8. Diferenciar entre valores masculinos y femeninos de ser necesario. Use las flechas Copiar todo para copiar valores entre géneros. Use la barra de desplazamiento para navegar hacia las listas de mediciones completas para dicho tipo de análisis.
- 9. Si se van a calcular las puntuaciones Z, el usuario debe introducir los valores a, b y SD, así como los Límites ASC.

En la tabla que figura a continuación se indica la prioridad de los informes. Dependiendo de la condición, se mostrará el rango normal o la puntuación Z calculada en las tablas de resultados de las mediciones.

Informe/Cálculo	Condición	
Puntuación Z calculada	Si ya se introdujeron los parámetros de la puntuación Z y el ASC está dentro de los límites	
Informe del rango normal	Si se introducen la puntuación Z y el rango normal y el ASC está fuera de los límites	
Informe del rango normal	Solo si se introdujo un rango normal	
No se ha calculado ni el rango normal ni la puntuación Z	Si se introducen los parámetros de la puntuación Z. No se ha introducido ningún rango normal y el ASC está fuera de los límites.	
No se ha calculado ni el rango normal ni la puntuación Z	No se han introducido parámetros de puntuación Z o un rango normal.	

ADVERTENCIA: Validar los valores ingresados de los rangos normales y los parámetros de las puntuaciones Z es responsabilidad exclusiva del usuario. Confirme todas las entradas antes del análisis. Los valores incorrectos pueden conducir a un diagnóstico erróneo.

- 10. Seleccione **Guardar y salir** para guardar todas las entradas.
 - Seleccione Cancelar para salir sin guardar ni aceptar ningún cambio.

NOTA: Para que una plantilla sea válida, los valores de los parámetros deben ingresarse como símbolos numéricos, con los valores superiores e inferiores indicados. Si se detectan inconsistencias en los valores, aparecerá el siguiente mensaje: "Se ha seleccionado un rango normal no válido. Corrija y guarde de nuevo". El parámetro que necesita corrección se resaltará en rojo. No está permitido guardar una plantilla en blanco, si intenta hacerlo se mostrará el siguiente mensaje: "No se pueden guardar las plantillas".

NOTA: Los Rangos normales introducidos para la pestaña Flujo influyen en los resultados de los análisis de flujo 2D y 4D.

Referencias

Buechel EV, Kaiser T, Jackson C, Schmitz A, Kellenberger CJ. Normal right- and left ventricular volumes and myocardial mass in children measured by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2009 Jun 21;11(1):19. doi: 10.1186/1532-429X-11-19. PMID: 19545393; PMCID: PMC2718870.

Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER, Vogel-Claussen J, Turkbey EB, Williams R, Plein S, Tee M, Eng J, Bluemke DA. Normal values for cardiovascular magnetic resonance in adults and children. J Cardiovasc Magn Reson. 2015 Apr 18;17(1):29. doi: 10.1186/s12968-015-0111-7. PMID: 25928314; PMCID: PMC4403942.

Maceira AM, Prasad SK, Khan M, Pennell DJ. Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2006;8(3):417-26. doi: 10.1080/10976640600572889. PMID: 16755827.

Maceira AM, Prasad SK, Khan M, Pennell DJ. Reference right ventricular systolic and diastolic function normalized to age, gender and body surface area from steady-state free precession cardiovascular magnetic resonance. Eur Heart J. 2006 Dec;27(23):2879-88. doi: 10.1093/eurheartj/ehl336. Epub 2006 Nov 6. PMID: 17088316.

Eliminar una plantilla

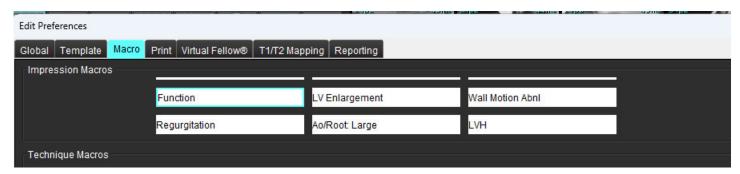
- 1. Seleccione Herramientas> Preferencias > Editar.
- 2. Seleccione la pestaña Plantilla.
- 3. Seleccione la plantilla del menú desplegable La plantilla actual es.
- Haga clic en Eliminar.

Pestaña Macro

Se pueden crear macros de informes personalizados que se pueden llenar automáticamente con valores calculados. Las macros son independientes de las plantillas, ya que las macros creadas están disponibles para todos los usuarios.

Se pueden crear macros para las siguientes secciones de los informes:

- Historial
- Impresión
- Técnica
- Hallazgos


Agregar una macro de impresiones

NOTA: Para crear una macro de Historial o Técnica deben seguirse los mismos pasos que para crear una macro de Impresión.

- 1. Seleccione Herramientas> Preferencias > Editar.
- 2. Seleccione la pestaña Macro.
- 3. Seleccione Agregar macro de impresiones.

Aparece un nuevo campo de texto en el panel Macros de impresión.

FIGURA 15. Ventana de macros de impresión

4. Coloque el cursor dentro del nuevo campo de texto y edite el nombre como desee.

NOTA: Los macros creados se pueden reordenar. Haga clic y arrastre el macro deseado a una nueva posición dentro de la lista.

Ingrese el Texto macro

- 1. Coloque el cursor en el fotograma de texto Información de macro e ingrese el texto relevante.
- 2. Para ingresar un resultado de parámetros, seleccione cualquiera de las pestañas de análisis a continuación y seleccione el botón de parámetro deseado, que se ingresará automáticamente en la información del macro. En este ejemplo, el parámetro Fracción de eyección del VI se seleccionó e ingresó al final del texto.

FIGURA 16. Información del macro

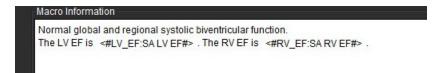


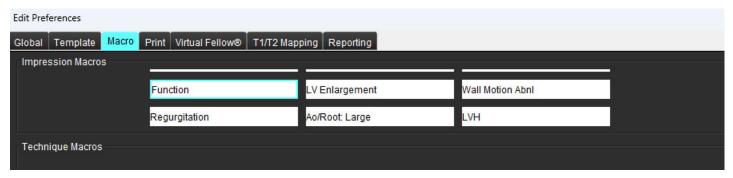
FIGURA 17. Selecciones del resultado de parámetros de macros

3. Seleccione Guardar y salir.

Seleccione Cancelar para salir sin guardar ni aceptar ningún cambio.

Ejecutar una macro

Como prerrequisito para la ejecución de macros, los resultados del análisis deben generarse antes de ejecutar macros que incluyan parámetros de resultados. Se pueden crear macros de técnica e impresión para automatizar la generación de informes.

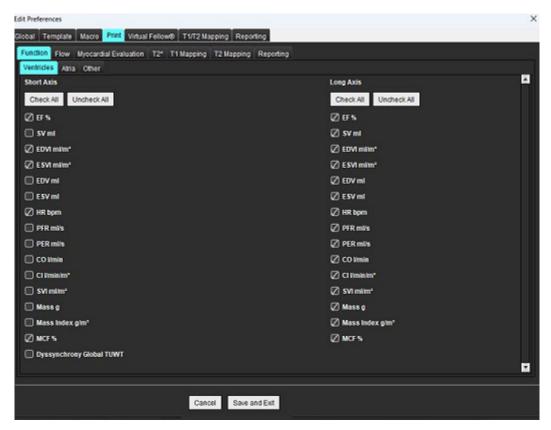

NOTA: Si una macro contiene un resultado de parámetro que se ha cambiado en el modo de análisis, será necesario volver a seleccionar la macro para que se muestre la actualización.

Eliminar una macro

- 1. Seleccione Herramientas> Preferencias > Editar.
- 2. Seleccione la pestaña Macro.
- 3. Seleccione la macro de la lista.

En el ejemplo que se muestra, la macro llamada Función se selecciona para su eliminación.

FIGURA 18. Lista de selección de macro



4. Seleccione Borrar macro(s) seleccionada(s).

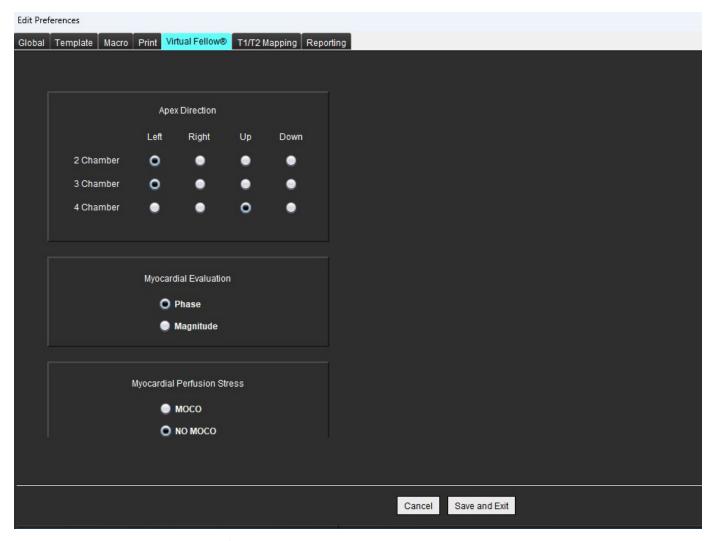
Pestaña Impresión

Los resultados calculados de cada modo de análisis se pueden configurar para que se incluyan y se ordenen en el informe en la pestaña **Impresión**.

FIGURA 19. Ajustes de impresión

- 1. En el menú, seleccione Herramientas > Preferencias > Impresión.
- 2. Seleccione la pestaña de análisis adecuada y verifique el resultado deseado que se incluirá en el informe.
- 3. El orden de los resultados como están enumerados en el informe se puede cambiar haciendo clic directamente sobre un resultado y arrastrándolo a una nueva posición de la lista.
- 4. Repita para cada pestaña de modo de análisis.
- 5. Seleccione Guardar y salir.

Seleccione Cancelar para salir sin guardar ni aceptar ningún cambio.

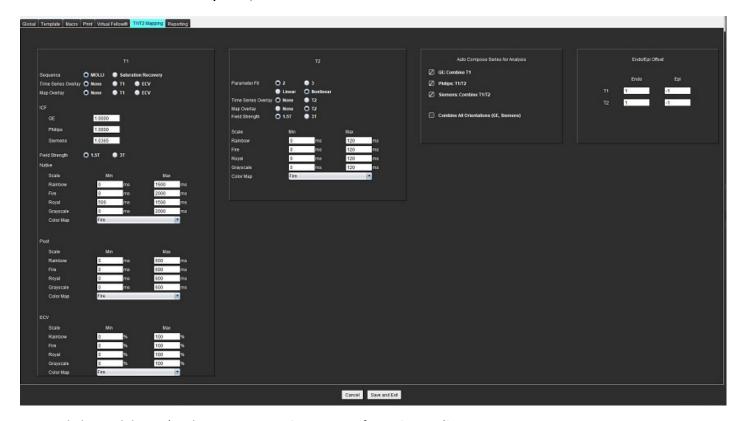

NOTA: Si las selecciones de impresión se realizan directamente en la interfaz de la aplicación, no se guardarán con la plantilla.

NOTA: Si se cambia el orden de las mediciones directamente en la interfaz, el cambio no se guardará con la plantilla.

NOTA: Las mediciones definidas por el usuario y creadas bajo Otros en el análisis de funciones aparecerán en la pestaña Ajustes de impresión/Otros. Estas mediciones pueden volver a ordenarse.

Pestaña Virtual Fellow®

FIGURA 20. Preferencias de Virtual Fellow®



- 1. Seleccione Herramientas> Preferencias > Editar.
- 2. Seleccione la pestaña Virtual Fellow®.
- 3. Seleccione la dirección apical para las vistas del eje largo
- 4. Seleccione la serie para mostrar la Fase o la Magnitud de la evaluación miocárdica.
- 5. Seleccione la serie **MOCO** o **NO MOCO** para mostrar la perfusión miocárdica.
- 6. Seleccione Guardar y salir.

Seleccione **Cancelar** para salir sin guardar ni aceptar ningún cambio.

Pestaña de Mapeo T1/T2

FIGURA 21. Preferencias de mapeo T1/T2

- 1. En la barra del menú, seleccione Herramientas > Preferencias > Editar.
- 2. Seleccione la pestaña Mapeo T1/ T2.
- 3. Para crear una serie válida para el análisis, seleccione la opción correcta para el tipo de proveedor en **Composición automática de series para análisis**.
- 4. La Compensación de endo/epi está configurada en 1 y -1 donde 1 equivale a 0,25 píxeles.
- 5. Seleccione Guardar y salir.
 - Seleccione **Cancelar** para salir sin guardar ni aceptar ningún cambio.

Mapeo T1

- 1. Para analizar la serie de tiempo, seleccione **MOLLI** o **Recuperación de saturación** para el tipo Secuencia de Mapeo T1.
- 2. Para mostrar automáticamente el mapa de color, seleccione **Superposición de la serie temporal** o **Superposición de mapas**.
- 3. Introduzca el FCI de acuerdo con Análisis de mapeo T1 en la página 129.
- 4. Seleccione la Intensidad del campo y configure el tipo de mapa de color y los valores de escala para 1.5T o 3T.
- 5. Seleccione Guardar y salir.
 - Seleccione Cancelar para salir sin guardar ni aceptar ningún cambio.

Mapeo T2


- 1. Para analizar la serie temporal seleccione el cálculo **Preferencias de parámetros** correspondiente.
- 2. Para mostrar automáticamente el mapa de color, seleccione **Superposición de la serie temporal** o **Superposición de mapas**.
- 3. Seleccione la Intensidad del campo y configure el tipo de mapa de color y los valores de escala para 1.5T o 3T.
- 4. Seleccione Guardar y salir.

Seleccione **Cancelar** para salir sin guardar ni aceptar ningún cambio.

Pestaña de Elaboración de informes

- 1. Seleccione Herramientas > Preferencias > Editar en la barra del menú.
- 2. Seleccione la pestaña Elaboración de informes.
- 3. Haga clic en el campo correspondiente para editar el texto predeterminado de las descripciones de menús, como se muestra en Figura 22.
- 4. Añada un resultado de parámetro con el texto seleccionando la pestaña de análisis correspondiente, y haga clic en el parámetro que desee, como se muestra en Figura 22.
- 5. Elimine un resultado de parámetro colocando el cursor tras el resultado insertado y pulsando la tecla Borrar.

FIGURA 22. Ajustes de Elaboración de informes

- 6. Haga clic en para recuperar el texto original.
- 7. Defina los rangos categóricos de informe para un resultado de parámetro asociado con una selección de menú haciendo clic en

- 8. Seleccione el resultado de parámetro apropiado de la pestaña de análisis asociada.
- Elija Absoluto o Compensación 9.

Selección	Descripción
Absoluto	Los rangos se basan en valores absolutos de género sin importar la edad.
Compensar	Los rangos se basan en la cantidad de compensación desde el ajuste de rango normal de una plantilla y en la edad.

10. Teclee los valores apropiados para los rangos de categoría. Para eliminar una categoría de informe, haga clic en la barra de color. La barra se volverá gris y los valores se eliminarán. Figura 23.

FIGURA 23. Eliminar una categoría de informe

NOTA: Completar rangos categóricos activará la función de rellenado automático del informe. El texto se rellenará en función de los valores definidos por el usuario. Si se ha hecho una selección desde la interfaz del menú durante el proceso de informe, la función de rellenado no seguirá activada.

NOTA: El texto rellenado automáticamente para los siguientes resultados de parámetro requiere que el usuario complete el análisis correspondiente: Volúmenes auriculares, hipertrofia: grosor máximo de pared, T2*, estenosis valvular, regurgitación valvular.

11. Para reiniciar los rangos categóricos de informe y los valores seleccionados, haga clic en

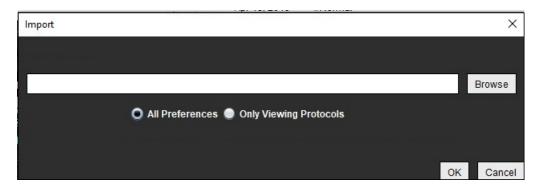
Definir la categoría de hipertrofia

El informe de hipertrofia puede definirse aún más como concéntrico o excéntrico. Los valores deben introducirse para los rangos categóricos, y deben completarse los valores de concentricidad para hombre y mujer. Consulte la Figura 24.

FIGURA 24. Rangos categóricos de hipertrofia y concentricidad

Referencias

Petersen SE, Khanji MY, Plein S, Lancellotti P, Bucciarelli-Ducci C. European Association of Cardiovascular Imaging expert consensus paper: a comprehensive review of cardiovascular magnetic resonance normal values of cardiac chamber size and aortic root in adults and recommendations for grading severity. Eur Heart J Cardiovasc Imaging. 2019 Dec 1;20(12):1321-1331. doi: 10.1093/ehjci/jez232. Erratum in: Eur Heart J Cardiovasc Imaging. 2019 Dec 1;20(12):1331. PMID: 31544926.


Referencias de concentricidad

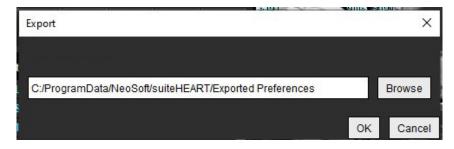
Khouri MG, Peshock RM, Ayers CR, de Lemos JA, Drazner MH. A 4-tiered classification of left ventricular hypertrophy based on left ventricular geometry: the Dallas heart study. Circ Cardiovasc Imaging. 2010 Mar;3(2):164-71. doi: 10.1161/CIRCIMAGING.109.883652. Epub 2010 Jan 8. PMID: 20061518.

Preferencias de Importación

1. Seleccione Herramientas > Preferencias > Importación.

FIGURA 25. Preferencias de importación

- 2. Seleccione el botón Examinar, seleccione la ubicación del archivo de ajustes y luego seleccione el botón Abrir.
- 3. Para importar protocolos de visualización, seleccione el botón de opción Solo protocolos de visualización.
- 4. Seleccione Aceptar para realizar el procedimiento de importación como se define.


Seleccione Cancelar para salir sin realizar la importación.

NOTA: No se admite la importación de ajustes de versiones anteriores (4.0.4 o inferior) del software suiteHEART®. Póngase en contacto con el Servicio de Asistencia de NeoSoft en service@neosoftmedical.com para obtener ayuda con la importación de ajustes de versiones anteriores.

Preferencias de exportación

1. Seleccione Herramientas > Preferencias > Exportación.

FIGURA 26. Preferencias de exportación

- 2. Seleccione **Examinar**, seleccione la carpeta en la que colocará el archivo de ajustes y luego seleccione **Guardar**.
- 3. Seleccione Aceptar.

Seleccione Cancelar para salir sin realizar la exportación.

Virtual Fellow®

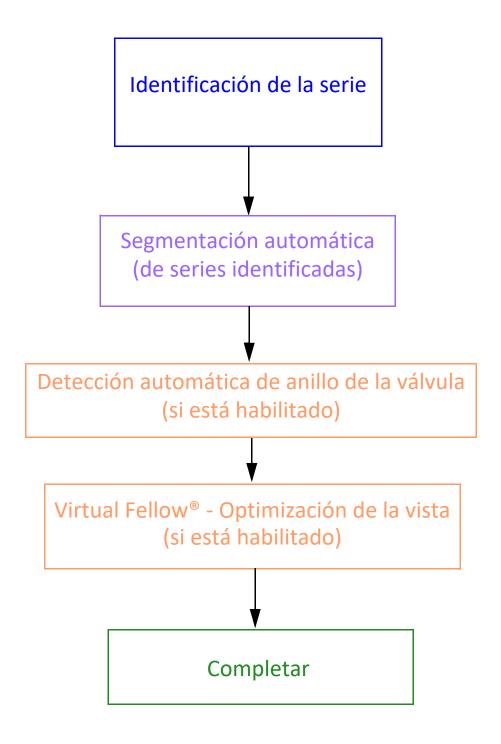
Virtual Fellow® es una función estandarizada de visualización de imágenes para estudios de RM cardíaca. La función mejora el flujo de trabajo de visualización, lo que facilita a los médicos revisar los estudios de RM cardíaca. La función aplica automáticamente herramientas de manipulación de imágenes, como el nivel de la ventana, el zoom, la panorámica y la rotación. Los estudios de RM cardíaca actuales y anteriores se pueden revisar fácilmente con la función Virtual Fellow®.

NOTA: Para habilitar la función Virtual Fellow® con procesamiento previo, consulte las instrucciones de uso de la suiteDXT.

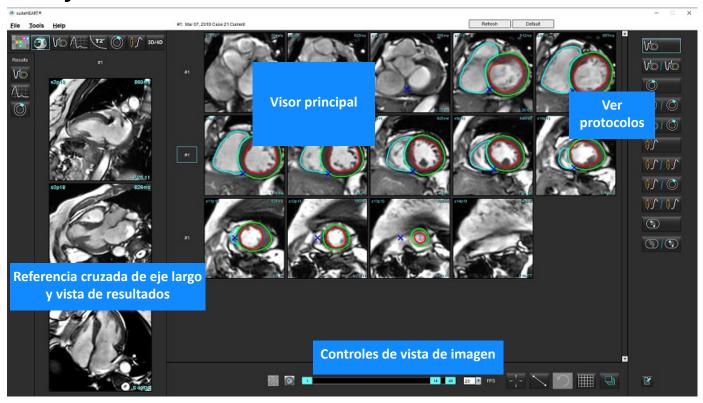
NOTA: El ID del paciente debe coincidir en los dos exámenes (el actual y el anterior) que se verán en Virtual Fellow®.

NOTA: La edición de los resultados de los análisis no se puede realizar en Virtual Fellow®. Seleccione el modo de análisis apropiado para realizar la edición.

ADVERTENCIA: El usuario es responsable de confirmar la selección de imagen correcta para los protocolos de visualización creados por Virtual Fellow[®]. Las imágenes identificadas incorrectamente para los protocolos de visualización actuales/anteriores se pueden seleccionar manualmente. El usuario debe estar debidamente capacitado en técnicas de imagen cardíaca para garantizar que se revisen las imágenes apropiadas. Para revisar todas las imágenes adquiridas para el estudio, use el modo Visor que se encuentra en Herramientas de gestión de imagen en la página 21.



ADVERTENCIA: Antes de la revisión o comparación de los estudios, confirme visualmente toda la información del indicador del paciente del examen en la parte superior de la interfaz. #1 indica el estudio actual, #2 indica el estudio anterior.



ADVERTENCIA: La manipulación de imágenes del tipo AV/NV, panorámica, zoom, rotación y volteo realizada por Virtual Fellow[®] puede afectar la aparición de diferentes patologías y el discernimiento de otras estructuras anatómicas. Revise cada protocolo de visualización y realice los ajustes apropiados.

Preprocesamiento con Virtual Fellow®

Interfaz de Virtual Fellow®

Selecciones de Virtual Fellow®

Selección	Descripción	
	Virtual Fellow®	
	Resultados de la función de visualización	
	Mostrar resultados de flujo	
	Mostrar resultados de la evaluación del miocardio	

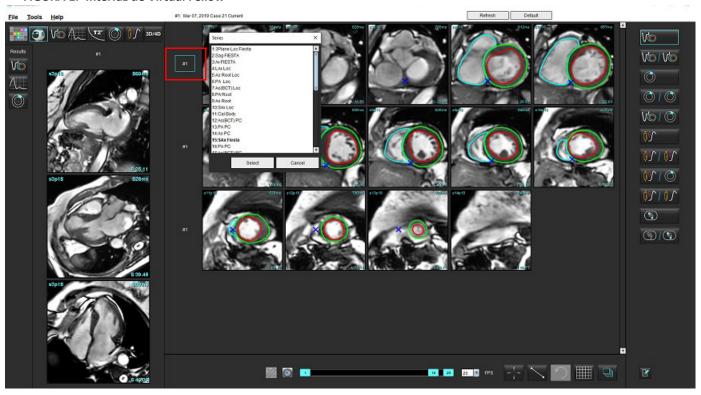
Selección	Descripción
R	Link Toggle se utiliza para realizar AV/NV, panorámica, rotación y volteo, tanto en la serie actual como en la anterior.
%	Unlink Toggle se utiliza para realizar AV/NV, panorámica, rotación y volteo en una serie simple. Nota: El zoom siempre se aplica a las series actuales y anteriores.
Phase	La Fase se utiliza para ver la mejora tardía sensible a la fase.
○ Magnitude	La Magnitud se utiliza para ver la mejora tardía de la magnitud.
• мосо	MOCO se utiliza para ver series de perfusión miocárdica con corrección de movimiento.
O NO MOCO	NO MOCO se utiliza para ver series de perfusión miocárdica sin corrección de movimiento.
#1	# 1 es el indicador de la serie que se muestra para el estudio actual. Haga clic con el botón izquierdo del ratón directamente en #1 para cambiar la serie.
#2	# 2 es el indicador de la serie que se muestra para la serie de estudio anterior. Haga clic con el botón izquierdo del ratón directamente en #2 para cambiar la serie.
18	Los controles de cine se utilizan para reproducir, pausar, seleccionar los cuadros por segundo y definir los fotogramas de inicio y finalización de la película de cine.
	Herramienta de referencia cruzada que identifica y muestra automáticamente las imágenes que contienen la misma ubicación. Para obtener información sobre el uso de esta función, consulte Encontrar función* en la página 22.
	Las herramientas de medición se pueden usar en el Visualizador principal y en las vistas de eje largo.
う	Deshacer ediciones de mediciones genéricas.

Selección	Descripción	
	Opciones de diseño de ventana gráfica*: 1x1, 1x2, 4x4 y 5x4. *Depende del protocolo seleccionado.	
	El alcance tiene la misma función que se describe en Herramientas de manipulación de imágenes en la página 12.	
Flecha izquierda del teclado	Se utiliza para avanzar en la ubicación del corte cuando se encuentra en un protocolo de visualización actual/anterior.	
Flecha derecha del teclado	Se usa para revertir la ubicación del corte cuando está en un protocolo de visualización actual/anterior.	

Ver protocolos

	Tipo de serie
Vo	Serie de funciones de cine de eje corto.
VO/VO	Función de cine de eje corto actual con el anterior.
	Evaluación miocárdica.
	Evaluación miocárdica actual con el anterior.
VO 1 0	Función de cine de eje corto con evaluación miocárdica.
	Serie de perfusión miocárdica con esfuerzo.
	Serie de perfusión miocárdica con esfuerzo actual con estudio anterior.
	Perfusión miocárdica con esfuerzo actual con evaluación miocárdica.

	Tipo de serie
	Serie de Perfusión miocárdica con esfuerzo/reposo.
	Serie axial T1.
3/3	SSFP con serie axial T1.

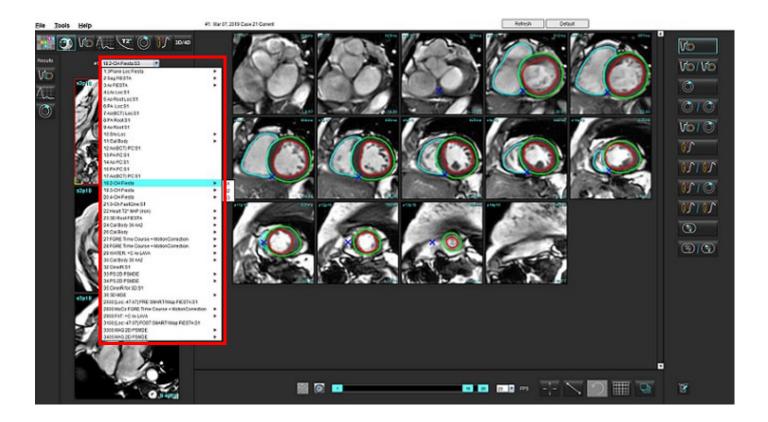

Teclas rápidas: ventanas gráficas de eje largo

Función	Acción
Navegación por segmentos hacia adelante.	Z
Navegación por segmentos hacia atrás.	А
Navegación por segmentos.	Rueda del ratón central

Selección de usuario de una serie para ver protocolos

Los protocolos de visualización están configurados para ver imágenes del estudio actual o del estudio actual y el anterior. Si las imágenes mostradas no son las que se espera que se revisen, vuelva a seleccionar la serie apropiada haciendo clic con el botón izquierdo del ratón directamente sobre la anotación del número (#1 para el estudio actual o #2 para el estudio anterior) en la interfaz de Virtual Fellow® como se muestra en la Figura 1. Se mostrará la lista de series para el estudio actual (#1), seleccione la serie apropiada.

FIGURA 1. Interfaz de Virtual Fellow®



Selección del usuario de una serie para ventanas de visualización de referencia cruzada de eje largo

Si las imágenes mostradas no son las vistas esperadas, se puede seleccionar la serie apropiada haciendo clic directamente en una ventana de visualización de eje largo y luego seleccionando la imagen desde el menú desplegable de archivos, como se muestra en la Figura siguiente.

NOTA: Si se utilizan las selecciones de teclado de **Z** o **A**, la imagen seleccionada por el usuario ya no estará presente en la ventana de visualización.

NOTA: Para establecer la dirección apical en el menú del Visualizador de imágenes, seleccione Herramientas > Ajustes > Editar y seleccione la pestaña Virtual Fellow[®].

Actualización automática

La función de actualización automática permite el inicio de un estudio con procesamiento en segundo plano. Si las imágenes se conectan en red cuando se inicia el estudio y si el algoritmo identifica un tipo de serie válido, se llevará a cabo un análisis en segundo plano (si Virtual Fellow® está encendido). Modos de análisis admitidos:

- Función
- Flujo
- Evaluación miocárdica (solo Realce tardío de eje corto)
- Mapeo T1
- Mapeo T2

Consulte las Instrucciones de uso de suiteDXT para configurar la función de actualización automática.

ADVERTENCIA: Tras el preprocesamiento, el usuario es responsable de evaluar la precisión del análisis completo y de hacer las correcciones necesarias.

Flujo de trabajo

 Si un estudio se conectó en red o si el estudio está en proceso de ejecución y conexión, y aparece un indicador circular azul claro en la lista de estudios de DXT, como se muestra en la Figura 1, se puede iniciar el estudio.

NOTA: Si el análisis se lleva a cabo manualmente antes de la actualización automática, no se sobrescribirán los resultados.

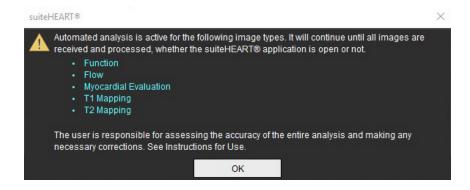
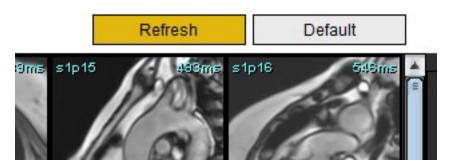

NOTA: Si el estudio está cerrado, un círculo verde indica que el procesamiento está completo.

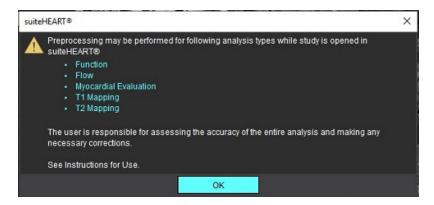
FIGURA 1. Lista de estudios de DXT

2. Cuando se abre el estudio, aparece el mensaje que se muestra en la Figura 2.


FIGURA 2. Inicio del estudio

3. Una vez completado el análisis en una serie, el indicador de actualización se vuelve de color amarillo, como se muestra en la Figura 3. Haga clic para actualizar los modos de análisis.

Según la cantidad de tipos de series para análisis, es posible que se deba hacer clic varias veces en Actualizar.


FIGURA 3. Indicador de actualización

4. Cuando se cierra el estudio, aparece el mensaje que se muestra en la Figura 4.

NOTA: Si después de cerrar el estudio, se conectan otros tipos de series, se puede comenzar el procesamiento.

FIGURA 4. Cierre del estudio

Edición de bordes

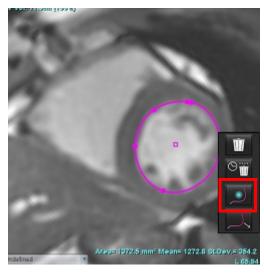
La edición de bordes, como se describe en esta sección, está disponible en todos los modos de análisis. Esta función está disponible tanto en la ventana del editor como en el modo de revisión.

ROI de spline de puntos

- 1. En la ventana del editor, haga clic con el botón izquierdo en el borde. El borde se pondrá de color púrpura cuando se seleccione.
- 2. Haga clic con el botón izquierdo y arrastre desde el centro del borde para moverlo, como se muestra en Figura 1.
 - Si el borde seleccionado se creó utilizando el método de spline de punto, los puntos se muestran para su edición. Haga clic con el botón izquierdo y arrastre cualquiera de los puntos para ajustar el tamaño y la forma del borde, como se muestra en Figura 1.
 - Si el borde seleccionado se creó con la herramienta de trazado a mano alzada, haga clic con el botón izquierdo del ratón y edite a mano alzada para actualizar el borde.

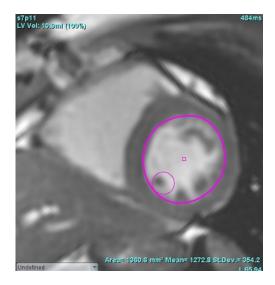
Funcionalidad adicional:

- Alt + clic izquierdo genera un punto de esquina.
- Al hacer clic en el primer punto, se cierra el borde.
- Al hacer clic en un borde directamente, se genera un punto.
- La tecla Eliminar y ubicar el cursor en un punto lo elimina.
- Arrastrar un punto cerca de un punto adyacente elimina este punto adyacente.
- Si el número de puntos es menor que 3, la ROI se eliminará.


FIGURA 1. Edición de borde convencional

Herramienta Retoques

- 1. Si desea activar la herramienta de retoques, haga clic con el botón izquierdo del ratón en el borde para seleccionarlo. Luego, haga clic con el botón derecho y seleccione la herramienta de retoques del menú emergente, como se muestra en Figura 2.
 - Cuando se aplica la herramienta de retoques, la ROI de la columna del punto seleccionado se convierte automáticamente en una ROI de mano alzada.


FIGURA 2. Activación de la herramienta Retoques

2. El cursor aparecerá como un cuadrado. Coloque el cursor lejos de la ROI y mantenga presionado el botón izquierdo del ratón. Aparecerá la herramienta de retoques, como se muestra en Figura 3.

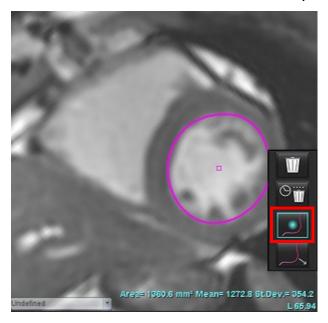

NOTA: El tamaño del círculo de retoques equivale, de forma predeterminada, a la distancia desde el punto delratón hasta la ROI seleccionada. Vuelva a colocar el cursor para cambiar el tamaño.

FIGURA 3. Herramienta Retoques

 Para desactivar la herramienta de retoques, haga clic con el botón izquierdo del ratón en el borde, luego haga clic con el botón derecho del ratón y seleccione la herramienta de retoques en el menú emergente, como se muestra en la Figura 4.

FIGURA 4. Desactivación de la herramienta Retoques

NOTA: El estado de activación/desactivación predeterminado de la herramienta de retoques se puede establecer en Ajustes.

Herramienta de Extracción de bordes

 Si desea activar la herramienta de extracción, haga clic con el botón izquierdo del ratón en el borde para seleccionarlo. Luego, haga clic con el botón derecho y seleccione la herramienta de extracción del menú emergente, como se muestra en la Figura 5. Permite el ajuste de un segmento del borde arrastrando porciones del borde para hacer pequeños ajustes.

FIGURA 5. Activación de la herramienta de extracción

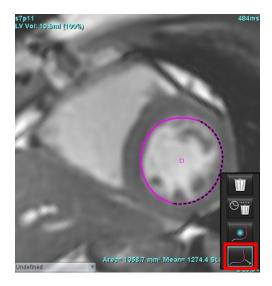

 Haga clic con el botón izquierdo directamente en el segmento del borde que desea editar. La longitud del segmento punteado negro se puede controlar con la rueda central del ratón. La posición del cursor del ratón desde la línea punteada negra controlará el cambio de la edición para ese segmento del borde.

FIGURA 6. Herramienta de extracción

3. Para desactivar la herramienta de extracción, haga clic con el botón izquierdo del ratón en el borde, luego haga clic con el botón derecho del ratón y seleccione la herramienta de extracción en el menú emergente, como se muestra en la Figura 7.

FIGURA 7. Desactivación de la herramienta de extracción

Eliminar un borde

1. Haga clic con el botón izquierdo en el borde para seleccionarlo y presione la tecla Eliminar en el teclado.

o

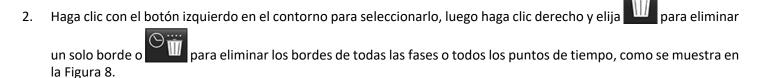
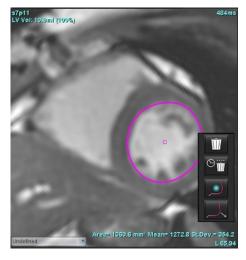



FIGURA 8. Borrado de borde

NOTA: La funcionalidad de spline de puntos aplica a todos los análisis, excepto para el Flujo Visor 3D/4D.

Las siguientes funcionalidades de copiar y pegar, y traducir están disponibles en los modos de análisis, a excepción del análisis de FOP.

- Ctrl + C = Copiar ROI
- Ctrl + V = Pegar ROI
- Ctrl + S = Suavizar ROI

Herramienta de edición adicional (solo función de análisis)

En la ventana gráfica del editor se muestran opciones para alternar entre los tres modos de edición.

Herramienta	Descripción
0	Limitar ROI
0	No limitar ROI
Q	Superposición

Análisis de funciones

El usuario es responsable de la colocación precisa y completa (y la asignación correcta) de todas las regiones de interés (ROI), incluidas las generadas o modificadas por los algoritmos de segmentación automática. Los valores cuantitativos generados por el software dependen de la colocación precisa y completa (y la asignación correcta) de estas regiones de interés.

La función de preprocesamiento del estudio permite el preprocesamiento del análisis de funciones. Consulte las Instrucciones de uso de suiteDXT.

En esta sección se detallan los pasos habituales que se deben seguir para realizar un análisis de la función cardíaca. Los flujos de trabajo de muestra proporcionan una visión general de los pasos que deben seguirse en la aplicación para realizar un análisis de la función cardíaca. Los procedimientos describen cómo realizar análisis cuantitativos.

IMPORTANTE: Se recomienda que esté calificado para realizar análisis cardíacos si los resultados del análisis se van a utilizar para determinar un diagnóstico.

ADVERTENCIA: Tras el preprocesamiento, el usuario es responsable de evaluar la precisión del análisis completo y de hacer las correcciones necesarias. Una revisión exhaustiva debe incluir lo siguiente:

- Colocación/identificación de la ROI
- Asignaciones DF/SF
- Colocación del anillo VM/VT
- Ubicación de la inserción del VD

ADVERTENCIA: La aplicación solo ayuda a realizar el análisis de las imágenes y no proporciona una interpretación clínica de los resultados de forma automática. El uso y la colocación de mediciones cuantitativas quedan a criterio del usuario. Podría obtenerse un diagnóstico erróneo si las mediciones son inexactas. Las mediciones solo deben ser creadas por un usuario debidamente capacitado y calificado.

ADVERTENCIA: Un plano de exploración incorrecto puede generar resultados de análisis inexactos. Ver Apéndice B.

NOTA: Las series 2D retrospectivas creadas a partir de flujo 4D pueden requerir segmentación manual.

Hay tres categorías para el análisis:

Ventricles

- Incluye análisis de volumen para el ventrículo izquierdo (VI) y el ventrículo derecho (VD)

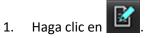
Atria

Incluye análisis de volumen para la aurícula izquierda (AI) y derecha (AD).

Other

- Incluye mediciones lineales predefinidas y mediciones definidas por el usuario que se pueden añadir.

Ventrículos


Seleccione el tipo de análisis:

NOTA: El modo matriz se puede utilizar para eliminar bordes.

Calcular mediciones de índice

2. Ingrese la altura y el peso del paciente.

El índice de volumen diastólico final, el índice de volumen sistólico final, el índice diastólico final de masa, el índice sistólico final de masa, la fase de índice de masa, el índice de gasto cardíaco y las mediciones del índice de volumen sistólico se calculan en la Tabla de medición.

NOTA: El método de cálculo de la ASC se puede seleccionar en la interfaz de informes.

Segmentación automática de VI y VD

La función de segmentación automática calcula los parámetros estándares de la función cardíaca sin entrada anatómica. Después de generar los resultados de la segmentación, los tipos de ROI se pueden seleccionar o deseleccionar para su visualización. La edición de segmentación también se puede realizar desde la entrada del usuario.

NOTA: Si los botones VI y VD no están seleccionados en la función Eje corto, o si el botón de selección de cámara en Eje largo no está seleccionado, el botón Comenzar replicación automática estará desactivado.

Para iniciar la segmentación de VI y VD, realice lo siguiente:

- 1. Seleccione la serie de eje corto y ajuste la ventana/nivel.
- 2. Haga clic en Ventricles
- 3. Haga clic en para la segmentación automática.
- 4. Realice las selecciones apropiadas desde la barra de herramientas de segmentación, como se muestra en Figura 1.
- 5. Seleccione para iniciar la segmentación automática.

FIGURA 1. Barra de herramientas de segmentación

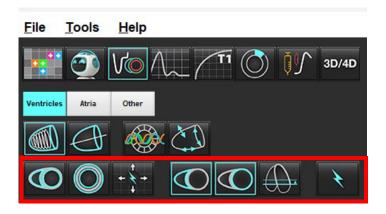


Tabla 1: Tipos de borde de segmentación automática

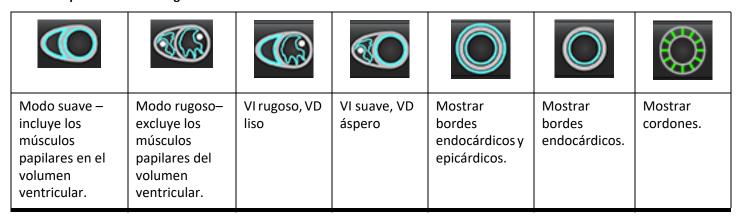
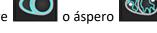
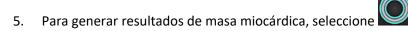


Tabla 2: Tipos de replicación* de segmentación automática

+ + +	+ * +	*	
Replicar todas las secciones,	Propagar todos los cortes;	Replicar todas las fases,	Replicar mostrando los
todas las fases; o bien, mostrar todas las secciones, todas las fases	fase única	un solo corte	bordes solo para fases DF/SF

^{*}La función de propagación se cambiará cuando se marque la preferencia por voltear los ejes x (corte) e y (fase) para el modo matriz.


Tabla 3: Selección ventricular


Ventrículo derecho: generar segmentación	Ventrículo izquierdo: generar segmentación	
o visualización	o visualización	

Realizar segmentación automática para todos los segmentos y todas las fases

Esta opción es necesaria para la generación de análisis regional, disincronía y resultados del análisis del plano valvular.

- 1. Seleccione la serie de eje corto y ajuste la ventana/nivel.
- 2. Haga clic en Ventricles .
- 3. Haga clic en para la segmentación automática.
- 4. Desde la barra de segmentación, seleccione el modo suave

- 6. Haga clic en para todas las fases y todos los cortes.
- 7. Haga clic en o , o ambos

NOTA: Para una segmentación óptima del VD, seleccione los trazos epicárdico y endocárdico.

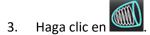
8. Seleccione para iniciar la segmentación automática.

NOTA: El botón Iniciar replicación automática se desactivará si las selecciones VI y VD no están seleccionadas.

Revisar la precisión/edición de la segmentación

- 1. Reproduzca la serie de eje corto en modo cine y revise la precisión de los bordes.
- 2. Edite los bordes que sean inexactos.

NOTA: La edición de bordes es compatible con el modo suave. Realice una edición de borde y seleccione Iniciar segmentación automática.

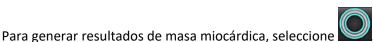

Para reasignar DF o SF, haga clic en los botones DF o SF y seleccione el lado izquierdo o derecho de la célula madre. Consulte Vista de la matriz en la página 73.

NOTA: Las asignaciones de fase para DF y SF las determina la segmentación. El volumen mayor calculado se asigna DF, y el volumen menor calculado se asigna a SF.

- 3. Revise la colocación del punto de inserción de VD inferior en cada corte. Ajuste cada corte si es necesario.
- 4. Revise el modo matriz y confirme las asignaciones de DF y SF.

Realizar la segmentación automática para todos los cortes en una sola fase

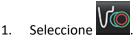
- Seleccione la serie de eje corto y ajuste la ventana/nivel. 1.
- Haga clic en Ventricles . 2.



5.

Desde la barra de segmentación, seleccione el modo suave 4.

- Revise las imágenes de eje corto y seleccione la fase diastólica final. 6.
- para todos los sectores en una sola fase. 8.
- para iniciar la segmentación automática. 9.
- 10. Revise las imágenes de eje corto y seleccione la fase sistólica final.
- para iniciar la segmentación automática.


NOTA: El botón Iniciar replicación automática se desactivará si las selecciones VI y VD no están seleccionadas.

Revisar la precisión/edición de la segmentación

- Reproduzca la serie de eje corto en modo cine y revise la precisión de los bordes. 1.
- 2. Edite los bordes que sean inexactos.
- Revise la matriz y confirme las asignaciones de DF y SF. 3.
- 4. Revise todos los resultados en la tabla de mediciones.

Procedimiento de análisis manual de la función del VI y del VD

NOTA: Se recomienda utilizar las fases diastólica final y sistólica final. El procesamiento debe comenzar en la fase diastólica final. El flujo de trabajo de análisis generalmente se realiza desde la base hasta el ápice.

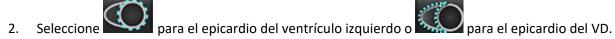
- 2. Seleccione la serie apropiada de eje corto de la vista de imagen.
- 3. Haga clic en Ventricles
- 4. Haga clic en el botón para mediciones de Volumen.
- 5. Localice la fase diastólica final.

Definir el endocardio

- 2. Trace el borde endocárdico.
- 3. Continúe con el siguiente segmento usando desplazamiento del ratón o seleccione la miniatura.
- 4. Repita los pasos 2 y 3 hasta que todo el ventrículo izquierdo o derecho esté segmentado.

La herramienta de borde endocárdico permanecerá seleccionada para acelerar la segmentación de múltiples cortes.

- 5. Localice la fase sistólica final.
- 6. Repita los pasos 2 y 3 en la fase sistólica final hasta que todo el ventrículo izquierdo o derecho esté segmentado.


NOTA: El software define automáticamente la fase diastólica final como la fase con el volumen más grande, y la fase sistólica final como la fase con el volumen más pequeño. Las asignaciones de fase diastólica final y sistólica final se actualizan durante la segmentación.

Revisar la precisión/edición de la segmentación

- 1. Reproduzca la serie de eje corto en modo cine y revise la precisión de los bordes.
- 2. Edite los bordes que sean inexactos.
- 3. Revise la matriz y confirme las asignaciones de DF y SF.
- 4. Revise todos los resultados en la tabla de mediciones.

Procedimiento manual de masa miocárdica del VI y VD

Seleccione la fase cardíaca adecuada.

- Trace el borde epicárdico. 3.
- + , <-- y --> o seleccione la miniatura. Continúe con el siguiente corte usando 4.
- 5. Repita los pasos 3 y 4 hasta que todo el epicardio ventricular izquierdo o derecho esté segmentado. Los resultados de la masa se actualizan automáticamente a medición que se definen los bordes epicárdicos.

Revisar la precisión/edición de la segmentación

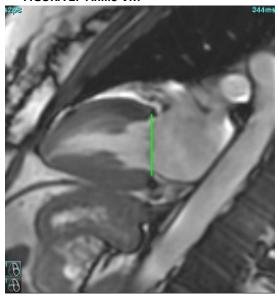
- 1. Reproduzca la serie de eje corto en modo cine y revise la precisión de los bordes.
- 2. Edite los bordes que sean inexactos.
- 3. Revise el modo matriz y confirme las asignaciones de DF y SF.
- Revise todos los resultados en la tabla de mediciones. 4.

Interpolación Basal

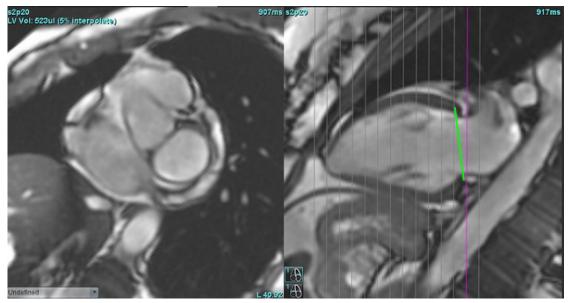
Para realizar la interpolación de los cortes basales, identifique el anillo de la válvula mitral o tricúspide en una vista de eje largo.

NOTA: La función de interpolación está desactivada a no ser que la inserción automática del anillo de la válvula del VI y el VD se haya elegido en Ajustes. Seleccione Herramientas > Preferencias > Editar. Compruebe Inserción automática del anillo de la VM o VT en Función.

- Para la interpolación basal del VI, seleccione una vista de 2 cámaras en el modo de referencia cruzada.
- Seleccione 2.
- Defina el anillo VM, como se muestra en Figura 2. Revise la colocación de la línea en las fases sistólica final y diastólica final utilizando los controles de cine.


NOTA: Se admite la interpolación basal multiplano. Por ejemplo, el anillo de la VM puede identificarse en vistas de 2 y 4 cámaras; el ajuste se realiza entre los dos planos. Para una colocación automática, seleccione Herramientas > Preferencias > Edición. Compruebe la inserción automática del anillo de la VM e incluya el anillo de la VM de 4 cámaras.

NOTA: Localice la serie de la colocación del anillo de la VM o VT haciendo clic en o en la parte inferior izquierda de la ventana gráfica.


FIGURA 2. Anillo VM

4. Revise el cálculo actualizado revisando los sectores de referencia cruzada en relación con la línea.

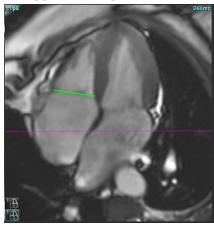

Como se muestra en Figura 3, el cálculo del volumen interpolado se basa en la relación de la intersección de la línea con el corte (línea rosa). Ahora, este volumen se incluye en los resultados del volumen. La región de interés real no se mostrará. Los cortes que se han interpolado indicarán la cantidad de volumen con el porcentaje de interpolación en la esquina izquierda de la imagen, como se muestra en Figura 3.

FIGURA 3. Cálculo de volumen

- 5. Para la interpolación basal de VD, seleccione una vista de 4 cámaras en el modo de referencia cruzada.
- 6. Seleccione
- 7. Defina el anillo VT, tal como se muestra en Figura 4. Revise la colocación de la línea en las fases sistólica final y diastólica final apropiadas, utilizando el control de cine.

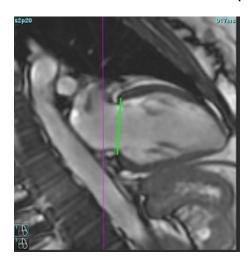
FIGURA 4. Anillo VT

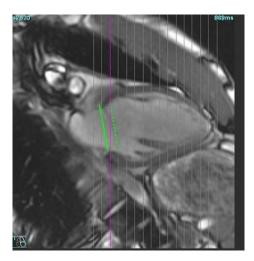
- Revise los cálculos actualizados revisando los cortes de referencia cruzada en relación con la línea y revise las asignaciones DF y SF en la vista de matriz.
- 9. Para restablecer el resultado al valor original, haga clic con el botón derecho del ratón y manténgalo presionado directamente en la línea para seleccionar eliminar; o bien, haga clic con el botón izquierdo del ratón en la línea y use la tecla Eliminar en el teclado.

Exactitud de revisión

- 1. Reproduzca la serie de eje largo en modo cine y revise la ubicación de la línea.
- 2. Ajuste la colocación de la línea según sea necesario.
- 3. Si se ha realizado la inserción automática, verifique la selección adecuada de la serie y la colocación de la línea. Si no se coloca correctamente, haga clic con el botón derecho del ratón en la línea y elimine.

Corrección de movimiento entre series


La Corrección de movimiento entre series compensa la traslación cardíaca que puede ocurrir entre la adquisición de imágenes de eje largo y las imágenes de eje corto. Pueden producirse errores en los volúmenes de la cámara si los planos anulares se derivan de imágenes de eje largo que no se registran espacialmente con imágenes de eje corto que contienen los bordes endocárdicos utilizados para el análisis volumétrico. El error puede producirse si las imágenes de los ejes corto y largo se adquieren en diferentes etapas del ciclo respiratorio o si el paciente cambia de posición (es decir, se traslada) entre la adquisición de las imágenes de los ejes largo y corto. Cuando se selecciona **Corrección de movimiento entre series**, el centro diastólico final del plano de la válvula auriculoventricular se define por el borde endocárdico ventricular diastólico final más basal. La angulación del plano de la válvula anular y la posición relativa de su centro en otras fases cardíacas están determinadas por la angulación de las líneas anulares y la posición relativa de los centros anulares como se define en las imágenes del eje largo.


NOTA: Para acceder a la función en el Modo de análisis de funciones. Seleccione **Herramientas> Preferencias > Editar**. Seleccione **Corrección de movimiento entre series** en Función.

- 1. Realice la segmentación automática del VI y del VD para todas las fases de todos los cortes.
- 2. Realice la interpolación basal del VI y el VD.
- 3. Seleccione

4. La concordancia puede confirmarse cuando la línea discontinua aparece superpuesta sobre la colocación de la línea del anillo de la VM, como se muestra en la Figura 5 (izquierda).

FIGURA 5. Concordancia confirmada (izquierda) Traslación cardíaca (derecha)

- 5. La Figura 5 (derecha) muestra una diferencia entre las líneas anulares continuas y discontinuas.
- 6. La línea continua representa el plano anular dibujado en la imagen del eje largo. La línea discontinua representa el plano anular trasladado en función de la ubicación del borde endocárdico más basal.

NOTA: Es responsabilidad del usuario determinar la razón de la diferencia entre la línea continua y la línea discontinua, y corregir el análisis si es necesario. Las posibles razones de la diferencia son las siguientes:

- El borde endocárdico más basal de la imagen del eje corto no está dibujado en el corte correcto. Si no se corrige, el software compensará incorrectamente la traslación.
- La línea anular no representa la posición del anillo. Si no se corrige, el software compensará incorrectamente la traslación.
- Traslación cardíaca entre la adquisición del eje largo y la adquisición del eje corto.

Si el borde endocárdico más basal se dibuja en el corte correcto y la línea anular se dibuja correctamente en la imagen del eje largo, entonces la diferencia entre la línea continua y la línea discontinua representa la verdadera traslación cardíaca y el software corregirá esa traslación.

7. Revise la traslación si se ha realizado la segmentación del VD y se ha colocado el anillo de la VT.

Vista de la matriz

NOTA: Los ejes X (corte) e Y (fase) se pueden intercambiar. Seleccione **Herramientas> Preferencias > Editar**. Seleccione **Voltear los ejes x (corte) e y (fase) para el modo matriz** en Función. Si el ajuste se modifica, la aplicación debe reiniciarse.

La matriz se usa para revisar y asignar las fases sistólica final y diastólica final, y para moverse entre fases y cortes. Las fases DF y SF asignadas se indican con bloques sólidos de color rojo (DF) o azul (SF), como se muestra en Figura 6.

FIGURA 6. Vista de matriz para el VI y el VD

Asignación ventricular

La asignación DF (Figura 7) o SF (Figura 8) del ventrículo izquierdo se realiza seleccionando el lado derecho de una célula madre individual.

La asignación DF (Figura 9) o SF (Figura 10) del ventrículo derecho se realiza seleccionando el lado izquierdo de una célula madre individual.

FIGURA 9. FIGURA 10.

Asignación auricular

La asignación DF (Figura 11) o SF (Figura 12) de la aurícula izquierda se realiza seleccionando el lado derecho de una célula madre individual.

FIGURA 11.

FIGURA 12.

La asignación DF (Figura 13) o SF (Figura 14) de la aurícula derecha se realiza seleccionando el lado izquierdo de una célula madre individual.

FIGURA 13.

FIGURA 14.

Funcionalidad de la matriz

La eliminación de bordes puede realizarse seleccionando una fila de fases o cortes, o una célula madre individual, y haciendo clic con el botón derecho del ratón.

La interpolación la señalan los indicadores sin color. La interpolación se puede aplicar para las siguientes condiciones:

- Si se rastrea la misma fase cardíaca a través de cortes para la sístole final o la diástole final o se omite un corte.
- Si se rastrea la misma fase cardíaca a través de cortes para la sístole final o la diástole final o se omite un corte, la interpolación basal se puede aplicar.

Opciones de vista

Vista de matriz de VI/VD

Vista de matriz de AD/AI

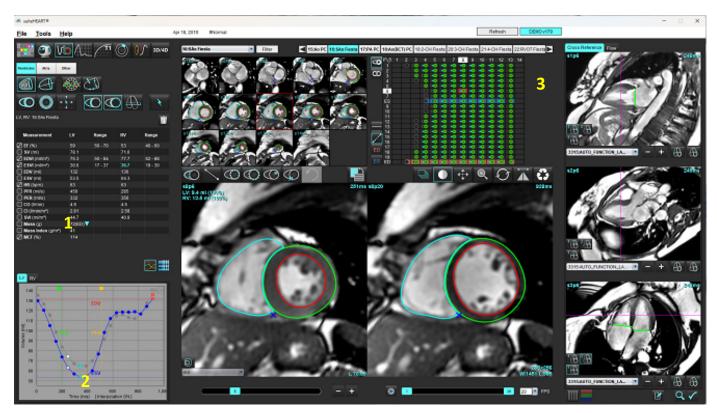

Selecciones

DF/SF global		Cuando se selecciona global, el volumen combinado se basa en las asignaciones DF y SF con la misma fase.
DF/SF único		Cuando se selecciona único, el volumen combinado se basa en el volumen por fase más grande y más pequeño correspondiente a cada corte. Debe seleccionar el modo Replicar todos los cortes, todas las fases, para activarlo. La interpolación basal no es compatible con este modo.
Interpolación	محم	Seleccione esta opción para activarla o desactivarla. Se indica directamente en la curva de volumen.
DF	ED	Haga clic directamente en el lado izquierdo de la célula madre para el VD, o el lado derecho de la célula para el VI, para asignar la fase final diastólica. Haga clic directamente en el lado izquierdo de la célula madre para la AD, o el lado derecho de la célula para la AI, para asignar la fase final diastólica.
SF	ES	Haga clic directamente en el lado izquierdo de la célula madre para el VD, o el lado derecho de la célula para el VI, para asignar la fase final sistólica. Haga clic directamente en el lado izquierdo de la célula madre para la AD, o el lado derecho de la célula para la AI, para asignar la fase final sistólica.
Máx.		Selección del volumen de aurícula máximo*
Mín.	3	Selección del volumen de aurícula mínimo*


^{*}Consulte la nota debajo de Aurícula en la página 81.

Indicadores de cámara

Indicadores de segmentación ventricular



Indicadores de segmentación auricular

Resultados del análisis de la función ventricular

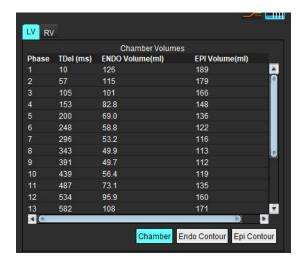
FIGURA 15. Resultados de la segmentación ventricular automática

1. Resultados volumétricos, 2. Curva de volumen, 3. Matriz

Curva de volumen

Cuando se realiza la segmentación automática para todas las fases y todos los cortes para el VI o el VD, se genera una curva de volumen ventricular versus tiempo, como se muestra en la Figura 15. Haga clic derecho para incluir la curva de volumen en el informe.

- El círculo rojo indica la fase diastólica final (etiquetada como DF en la ventana gráfica de la imagen).
 - Haga clic y arrastre el círculo rojo para reasignar DF.
- El círculo azul indica la fase sistólica final (etiquetada como SF en la ventana gráfica de la imagen).
 - Haga clic y arrastre el círculo azul para reasignar SF.
- El cursor verde indica la tasa pico de eyección (PER) ml/s. (Cursor vertical interactivo).
- El cursor amarillo indica la tasa de llenado pico (PFR) ml/s. (Cursor vertical interactivo).
- La selección de la fase de imagen correspondiente se indica mediante el círculo blanco en la curva de volumen.


Los resultados volumétricos se muestran en la tabla de mediciones.

- Para revisar los resultados de la masa ventricular o el índice de masa, haga clic izquierdo en el triángulo invertido para el VI o el VD.
- En el informe solo se muestra la fase seleccionada desde la lista de fases. El predeterminado es DF.

FIGURA 16. Resultados de la masa

	T WOOD	60.00	2000	2005
Measurement	LV	Range	RV	Range
	61	58 - 76	56	53 - 77
SV (ml)	79.0	59 - 115	77.2	58 - 109
EDVI (ml/m²)	74.4	59 - 93	79.3	57 - 94
ESVI (ml/m²)	29.2	16 - 34	35.2	14 - 40
EDV (ml)	130	90 - 171	139	87 - 172
ESV (ml)	51.1	25 - 62	61.7	20 - 72
HR (bpm)	63		63	
PFR (ml/s)	440	231 - 805	564	137 - 598
PER (ml/s)	413		576	
CO (I/min)	5.0		4.9	
CI (I/min/m²)	2.85		2.78	
SVI (ml/m²)	45.2	39 - 63	44.1	37 - 61
Mass (g)	70(ED)	70/ED)		
Mass Index (g/m²)	40	70(ED)		
✓ MCF (%)	119	66(ES)		
000 ac		70(p1)		V. 1
		71(p2)		
		67(p3)		
		70(p4)		
2000		68(p5)		
IV PV		65(p6)		

FIGURA 17. Tabla de volumen de la cámara

Los valores volumétricos completos del VI y el VD se muestran en la tabla de Volumen de la cámara.

Análisis regional ventricular izquierdo

El análisis regional de VI permite la revisión del movimiento de la pared, el grosor de la pared, el engrosamiento de la pared y los resultados del grosor de la pared.

NOTA: Si los botones VI y VD no están seleccionados en la función Eje corto, o si el botón de selección de cámara en Eje largo no está seleccionado, el botón Comenzar replicación automática estará desactivado.

- 1. Realice la segmentación automática del VI para todos los cortes en todas las fases (consulte la página 66).
- 2. Revise la ubicación del punto de inserción de VD en cada corte y ajuste el punto de inserción de VD para los cortes basales.
- Para agregar un punto de inserción de VD a una ubicación de corte, haga clic en el punto de inserción de VD seleccione un corte segmentado automáticamente y deposite el punto de inserción de VD.

4. Confirme clasificación basal, media y apical.

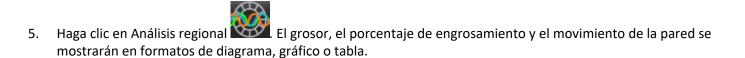
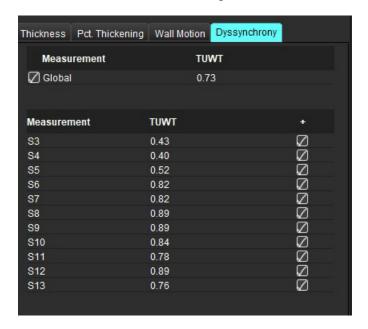


FIGURA 18. Análisis regional

Análisis de disincronía

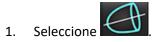
La disincronía es una extensión de los resultados del análisis regional que permite el cálculo de la base de la uniformidad temporal del grosor de la pared (TUWT), a partir de la información circunferencial obtenida del análisis regional.


Procedimiento de análisis de disincronía

- Realice la segmentación automática del VI (Consulte Realizar segmentación automática para todos los segmentos y todas las fases en la página 66.).
- Seleccione Análisis regional 2.

- 3. Seleccione la pestaña Disincronía.
- La tabla de mediciones mostrará los resultados para cada segmento y el resultado global medio. 4.
- El cálculo del resultado global es óptimo cuando solo se incluyen cortes del ventrículo medio del VI. Para eliminar un resultado de corte del cálculo del resultado global, haga clic directamente en el fotograma con la marca de verificación en la columna de la derecha (Figura 19).

FIGURA 19. Cálculo del resultado global



Referencias recomendadas

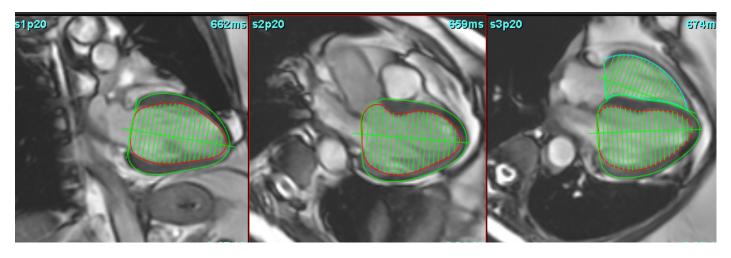
Bilchick et al, "Cardiac Magnetic Resonance Assessment of Dyssynchrony and Myocardial Scar Predicts Function Class Improvement Following Cardiac Resynchronization Therapy", JACC, Vol.1:No 5: 2008 p.561-8

Helm RH, Leclercq C, Faris OP, Ozturk C, McVeigh E, Lardo AC, Kass DA. Cardiac dyssynchrony analysis using circumferential versus longitudinal strain: implications for assessing cardiac resynchronization. Circulation. 2005 May 31;111(21):2760-7. doi: 10.1161/ CIRCULATIONAHA.104.508457. Epub 2005 May 23. PMID: 15911694; PMCID: PMC2396330.

Segmentación automática de eje largo

2. Seleccione una serie de eje largo.

Se recomienda crear una serie con vistas estándar de eje largo.

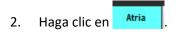

4. Seleccione para propagar todos los cortes y todas las fases.

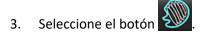
NOTA: El botón Iniciar replicación automática se deshabilitará si la selección de vista de eje largo no está seleccionada.

- 6. Revisar todos los trazos. Ajuste la línea central de modo que se corresponda con el eje largo del ventrículo izquierdo desde la base hasta el ápice.
- 7. Para el trazado manual haga clic en para trazar el endocardio ventricular izquierdo y haga clic en para trazar el endocardio ventricular derecho tanto para la diástole final como para la sístole final.
- 8. Para el cálculo de la masa, trace el epicardio ventricular izquierdo o el epicardio ventricular derecho

FIGURA 20. Colocación de la línea central

Los resultados se muestran en la tabla de mediciones.


Aurícula


NOTA: Las etiquetas de medida por defecto para los volúmenes auriculares son EDV, que hace referencia al volumen auricular máximo, y ESV, que hace referencia al volumen auricular mínimo. Para configurar las etiquetas de Vmáx y Vmín, seleccione Herramientas > Ajustes > Edición. Seleccione Etiqueta de volumen auricular: Vmáx., Vmín., debajo de Función.

Análisis manual de Al y AD

1. Seleccione la serie apropiada de la Vista de imagen.

NOTA: Para obtener resultados óptimos, se recomienda utilizar una pila de 4 cámaras para el análisis. La vista de 4 cámaras delinea mejor la anatomía de la aurícula.

4. Localice la fase diastólica final.

Definir el endocardio

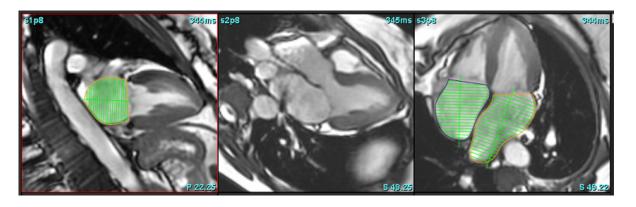
- 1. Seleccione para el endocardio AI o para el endocardio AD.
- 2. Trace el borde endocárdico.
- 3. Continúe con el siguiente segmento usando desplazamiento del ratón o haga clic en la miniatura.
- 4. Repita los pasos 2 y 3 hasta que toda la aurícula esté segmentada.
- 5. Localice la fase sistólica final.
- 6. Repita los pasos 2 y 3 en la fase sistólica final hasta que toda la aurícula esté segmentada.

NOTA: El software define automáticamente la fase diastólica final como la fase con el volumen más grande, y la fase sistólica final como la fase con el volumen más pequeño. Las asignaciones de fase diastólica final y sistólica final se actualizan durante la segmentación.

7. Si se ha utilizado una vista de eje corto, identifique el anillo de VM o VT.

Análisis automático de AI o AD

- 1. Haga clic en Atria
- 2. Seleccione una serie de eje largo.


NOTA: Se recomienda crear una serie con vistas estándar de eje largo. La segmentación auricular está admitida para las vistas de 2 y 4 cámaras.

- 3. Seleccione
- 4. Seleccione para propagar todos los segmentos, todas las fases.
- 5. Haga clic en

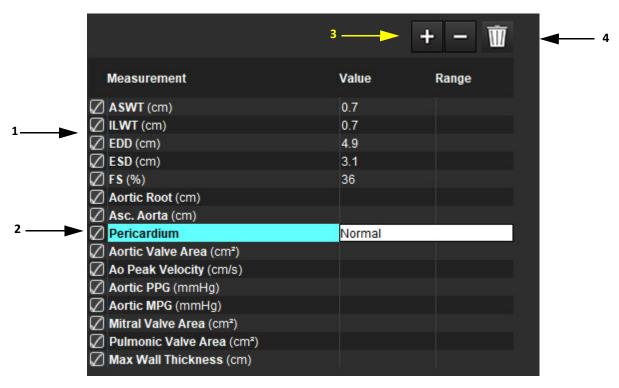
NOTA: El botón Iniciar replicación automática se deshabilitará si la selección de vista de eje largo no está seleccionada.

- 6. Revisar todos los trazos. Ajuste la línea central de modo que quede paralela a la cámara auricular.
- 7. Para el trazado manual, haga clic en para trazar el endocardio AD y haga clic en para trazar el endocardio AI tanto para la diástole final como para la sístole final.

FIGURA 21. Colocación de la línea central

Dimensiones y área auriculares

- 1. Haga clic en Atria
- 2. Seleccione la serie apropiada.
- 3. Para realizar una medición de la dimensión auricular, haga clic directamente en la tabla en la columna para AI o AD y luego deposite dos puntos. Consulte la Figura 22.
- 4. Para realizar una medición del área auricular, haga clic directamente en la tabla en la columna para AI o AD y luego dibuje una ROI. Consulte la Figura 22.


FIGURA 22. Medición auricular

Measurement	LA	Range	RA	Range
EDVI (ml/m²)				
ESVI (ml/m²)				
EDV (ml)				
ESV (ml)				
Dimension (cm)				
Area (cm²)			8	

Mediciones predeterminadas

La aplicación permite la notificación de mediciones lineales y de área. La información sobre herramientas está disponible colocando el cursor sobre la medición que aparece en la tabla.

FIGURA 23. Mediciones predeterminadas

1. Incluir en el Informe, 2. Campo de escritura para pericardio, 3. Agregar/Eliminar medición personalizada, 4. Eliminar todas las mediciones

Realizar una medición

- 2. Seleccione la serie.
- 3. Haga clic en el botón Other
- 4. Localice la imagen con la anatomía a medir.
- 5. Haga clic en la medición deseada, que se resaltará para indicar que la selección está activa.

PRECAUCIÓN: La colocación precisa de la línea es crítica para los resultados de medición. Podría obtenerse un diagnóstico erróneo si las mediciones son inexactas. Las mediciones solo deben ser creadas por un usuario debidamente capacitado y calificado.

6. Para editar, haga clic en la anotación. Cuando el color cambia a púrpura, está activo. Coloque el cursor sobre uno de los puntos finales y ajuste el punto final.


El valor de la distancia de medición se actualiza consecuentemente en la tabla de mediciones, cuando mueve el cursor fuera de la ventana del Editor de imágenes.

Coloque el cursor sobre el marcador central para mover toda la línea de distancia de medición a otra ubicación.

NOTA: Para restablecer la medición, seleccione la línea de distancia de medición y acceda al menú derecho del ratón y seleccione Papelera; o bien, use la tecla Eliminar en el teclado.

NOTA: Las mediciones personalizadas pueden reorganizarse en la pestaña Ajustes de impresión/Otros de Ajustes. Seleccione **Herramientas > Preferencias > Edición**, y después seleccione la pestaña **Impresión**.

Eliminar mediciones

para eliminar todas las mediciones.

Agregar medición personalizada

- 1. Haga clic en
- 2. Ingrese una etiqueta única en la ventana emergente Agregar medición personalizada.
- 3. Seleccione el tipo de medición como Lineal o Área.
- 4. Seleccione Aceptar.

Eliminar medición personalizada

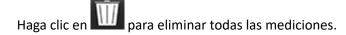
- 1. Haga clic en
- 2. Seleccione las mediciones personalizadas que se eliminarán de la lista.
- 3. Elija Seleccionar

NOTA: Las mediciones personalizadas creadas estarán presentes para todos los análisis futuros hasta que se eliminen de la lista.

Análisis de plano de la válvula aórtica

La función de análisis de plano de válvula aórtica permite el cálculo de la velocidad máxima, el gradiente de presión máxima y el gradiente de presión media de la válvula aórtica.

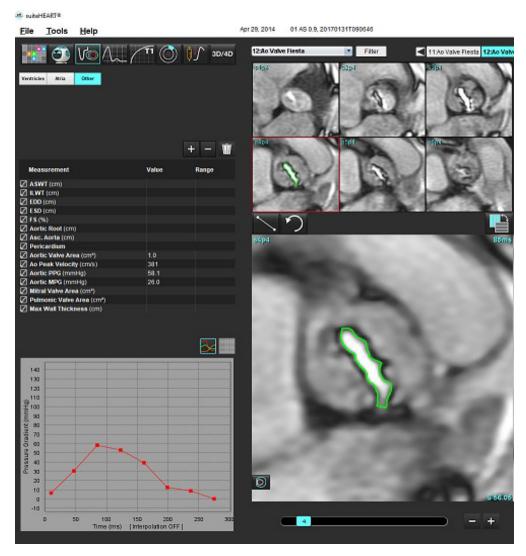
Utilizando los resultados de la segmentación automática del VI, el gradiente de presión se calcula a partir del gasto cardíaco, en función de los cambios fotograma por fotograma en el volumen sistólico del ventrículo izquierdo.


Procedimiento de análisis de plano de válvula aórtica

- 1. Realice la segmentación automática del VI en todos los cortes en todas las fases (consulte la página 66).
- 2. Seleccione una serie que demuestre la anatomía de la válvula.
- 3. Seleccione el área de la válvula aórtica de la tabla de mediciones (Figura 24) y realice la planimetría de la válvula aórtica, como se muestra en la Figura 25.

FIGURA 24. Área de la válvula aórtica

Measurement	Value	Range
ASWT (cm)	0.7	
☑ ILWT (cm)	0.7	
DEDD (cm)	4.9	
ESD (cm)	3.1	
Z FS (%)	36	
Aortic Root (cm)		
Asc. Aorta (cm)		
✓ Pericardium	Normal	
Aortic Valve Area (cm²)		
Ao Peak Velocity (cm/s)		


4. Al finalizar la ROI, la tabla se actualizará con los resultados y presentará un gráfico que muestra el gradiente de presión a lo largo del tiempo.

Referencias recomendadas

Wolff, Steven D., M.D., Ph.D. Noninvasive methods for determining the pressure gradient across a heart valve without using velocity data at the valve orifice. U.S. Patent 9,585,568, March 7, 2017.

FIGURA 25. Análisis de plano de la válvula aórtica

ADVERTENCIA: Se recomienda que esté calificado para realizar análisis cardíacos si los resultados del análisis se van a utilizar para determinar un diagnóstico.

NOTA: Los resultados de la velocidad pico, la gradiente de presión pico y la gradiente de presión media obtenidos mediante el análisis de plano de válvula aórtica no son válidos en pacientes con insuficiencia mitral o una derivación.

Fracción de contracción miocárdica

La fracción de contracción miocárdica (MCF) requiere una segmentación completa endo y epi del VI de eje corto y se debe incluir en la tabla de resultados de las funciones del eje corto. Es responsabilidad del usuario establecer sus propios rangos normales de MCF.

Referencias recomendadas

Abdalla M, Akwo EA, Bluemke DA, Lima JAC, Shimbo D, Maurer MS, Bertoni AG. Association between reduced myocardial contraction fraction and cardiovascular disease outcomes: The Multi-Ethnic Study of Atherosclerosis. Int J Cardiol. 2019 Oct 15;293:10-16. doi: 10.1016/j.ijcard.2019.07.040. Epub 2019 Jul 11. PMID: 31327521; PMCID: PMC7175692.

Arenja N, Fritz T, Andre F, Riffel JH, Aus dem Siepen F, Ochs M, Paffhausen J, Hegenbart U, Schönland S, Müller-Hennessen M, Giannitsis E, Kristen AV, Katus HA, Friedrich MG, Buss SJ. Myocardial contraction fraction derived from cardiovascular magnetic resonance cine images-reference values and performance in patients with heart failure and left ventricular hypertrophy. Eur Heart J Cardiovasc Imaging. 2017 Dec 1;18(12):1414-1422. doi: 10.1093/ehjci/jew324. PMID: 28165128.

Maurer MS, Packer M. How Should Physicians Assess Myocardial Contraction?: Redefining Heart Failure With a Preserved Ejection Fraction. JACC Cardiovasc Imaging. 2020 Mar;13(3):873-878. doi: 10.1016/j.jcmg.2019.12.021. PMID: 32139035.

Análisis de flujo

El modo de Análisis de flujo admite adquisiciones de flujo tanto en 2D como en 4D. Se admiten tanto la segmentación manual como la segmentación totalmente automática con la cuantificación de los volúmenes de flujo, velocidades, volúmenes de regurgitación, gradientes de presión, tiempo de hemipresión y Qp/Qs. Según la(s) selección(es) de métodos del usuario, se puede obtener el cálculo automático de la regurgitación aórtica, mitral, pulmonar y tricúspide. Los resultados precisos del flujo dependen de las imágenes que se adquieran utilizando el plano de exploración correcto, los parámetros de adquisición apropiados y la codificación del flujo a través del plano.

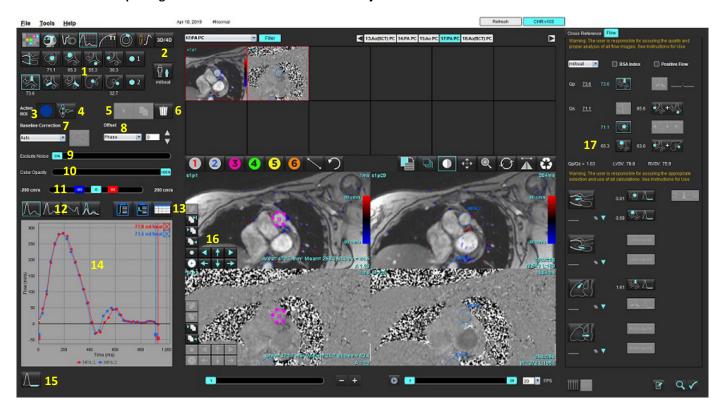
NOTA: La segmentación automática puede ser menos precisa en los casos en que la calidad de la imagen es deficiente. En esos casos, el usuario es responsable de editar los bordes o realizar la segmentación manual.

NOTA: Si se ha realizado tanto el análisis de contraste de fase 2D como el análisis de flujo 4D en línea, todos los resultados estarán disponibles en el modo de Análisis de flujo.

La función de Preprocesamiento permite identificar los tipos de vasos para el contraste de fase 2D como se indica en la Tabla 1. Consulte las Instrucciones de uso de suiteDXT.

ADVERTENCIA: Tras el preprocesamiento, el usuario es responsable de evaluar la precisión del análisis completo y de hacer las correcciones necesarias. Una revisión exhaustiva debe incluir lo siguiente:

- Colocación de la ROI
- Identificación correcta del vaso para cada categoría
- Corrección de línea de base



ADVERTENCIA: El usuario es responsable de la colocación precisa y la asignación correcta de la categoría de todas las regiones de interés (ROI), incluidas las generadas o modificadas por los algoritmos de segmentación automática. Los valores cuantitativos generados por el software dependen de la colocación precisa y la asignación correcta de la categoría de los vasos de todas las regiones de interés.

ADVERTENCIA: La aplicación solo ayuda a realizar el análisis de las imágenes y no proporciona una interpretación clínica de los resultados de forma automática. El uso y la colocación de mediciones cuantitativas quedan a criterio del usuario. Podría obtenerse un diagnóstico erróneo si las mediciones son inexactas. Las mediciones solo deben ser creadas por un usuario debidamente capacitado y calificado.

FIGURA 1. Descripción general de la interfaz de análisis de flujo

- 1. Categorías de vaso, 2. Selección Adulto/Pediátrico, 3. Selección de ROI activa, 4. Invertir gráfico, 5. Replicar selecciones, 6. Eliminar opciones,
- 7. Menú desplegable de corrección, línea de base, 8. Compensar: Fase, dilatación, flujo, 9. Excluir píxeles de ruido, 10. Control de la opacidad de color,
- 11. Corrección del solapamiento, 12. Selecciones de modo de curva, 13. Selecciones de la Tabla de resultados, 14. Resultados de la curva/Monitor,
- 15. Modo regurgitante, 16. Herramientas de edición, 17. Análisis integrado

NOTA: El análisis de flujo muestra las imágenes de magnitud y fase en una visualización de imagen de lado a lado. Otros tipos de imágenes adquiridas en el mismo lugar de exploración no se muestran y deben revisarse en el Visor.

NOTA: El ritmo cardíaco se puede obtener pasando el cursor sobre el resultado del flujo en el monitor de la curva.

Análisis de flujo utilizando la segmentación automática

Si se ha completado el preprocesamiento, basado en la serie de contraste de fase 2D presente en el estudio, la segmentación se realizará automáticamente en la serie de contraste de fase 2D y se asignará a la categoría de vaso apropiada (Tabla 1). La segmentación automática no requiere que se coloque una ROI inicial en el vaso, solo se debe seleccionar la categoría de vaso apropiada y la serie adecuada que muestra ese vaso. Si no se realiza el preprocesamiento, es importante seleccionar la categoría adecuada que se correlacione con la anatomía del vaso que se ha adquirido.

ADVERTENCIA: El usuario es responsable de la colocación precisa y la asignación correcta de la categoría de todas las regiones de interés (ROI), incluidas las generadas por el preprocesamiento.

NOTA: Si hay más de seis vasos adquiridos para el contraste de fase por pestaña, la función de preprocesamiento solo mantendrá los seis resultados más recientes.

NOTA: El resultado del flujo neto se mostrará en cada categoría de vaso. Si hay más de una medición de flujo en una categoría de vaso, se mostrará el resultado promedio. Para ocultar este valor, seleccione **Herramientas > Ajustes > Edición** y configure la unidad de flujo en **NINGUNO** en Flujo.

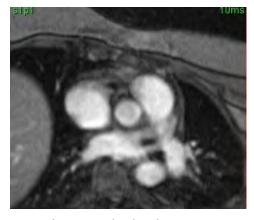
Tabla 1: Categorías de vaso

Categoría de vaso	Información sobre herramientas	Etiqueta
Q	TSVI	Tracto de salida del ventrículo izquierdo (pediátrico)
	АоАр	Aorta ascendente proximal
	AoAm	Aorta ascendente media
	AoDp	Aorta descendente proximal (Pediátrico)
	vcs	Vena cava superior (Pediátrico)
	APP	Arteria pulmonar principal
	APD	Arteria pulmonar derecha (Pediátrico)

Tabla 1: Categorías de vaso

Categoría de vaso	Información sobre herramientas	Etiqueta
	API	Arteria pulmonar izquierda (Pediátrico)
9 6	VCI	Vena cava inferior (Pediátrico)
(%)	AoDd	Aorta descendente distal (Pediátrico)
● 1 ● 2	Flujo 1, Flujo 2	Categorías definidas por el usuario. Haga clic derecho e introduzca una nueva etiqueta para la categoría. La etiqueta aparecerá como información sobre herramientas.

Realizar la segmentación automática o manual


(Ejemplo de segmentación de la aorta ascendente proximal)

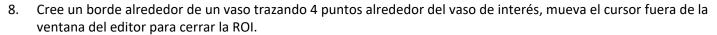
L. Seleccione Adulto o Pediátrico

- 2. Seleccione la categoría de
- 3. Seleccione la serie de contraste de fase apropiada que muestre la aorta ascendente proximal, como se muestra en la Figura 2.

FIGURA 2. Aorta ascendente proximal

4. Seleccione el color de ROI activa, como se muestra en la Figura 3.

FIGURA 3. Selección de ROI activa

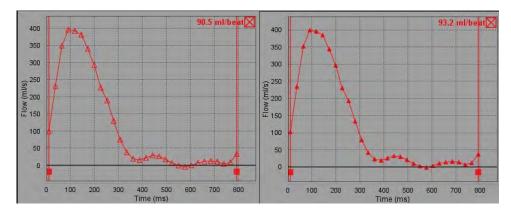



Seis ROI disponibles, numeradas del 1 al 6. La codificación de color se mantiene constante en la vista de análisis, las vistas de imágenes y los gráficos.

- 5. Seleccione
- 6. Revise la segmentación en el vaso. Confirme que se segmentó el vaso correcto.

Si el vaso incorrecto está segmentado, realice una segmentación manual.

7. Para realizar una segmentación manual, seleccione



o

- Elija replicar el mismo borde sobre todas las fases en el corte. Este procedimiento resulta útil al analizar vasos pequeños y fijos.
- 9. Para editar, haga clic en un borde, realice la edición y haga clic en . Consulte Edición del borde en la página 94.
- 10. Los resultados del flujo se muestran en el gráfico y las tablas de resultados. Haga clic en la casilla de verificación junto a resultados de flujo para eliminar la curva asociada del gráfico.
- 11. Seleccione una opción de corrección de la línea de base en el menú desplegable de archivos.

Las curvas con una corrección de línea de base aplicada tendrán puntos sólidos de datos de fase, como se muestra en la Figura 8. Consulte Opciones de corrección de la línea de base en la página 97.

FIGURA 4. Gráfico de flujo: sin corrección (gráfico izquierdo); con corrección aplicada (gráfico derecho)

Todas las curvas de flujo generadas se muestran en una dirección positiva. Las curvas invertidas están indicadas por

Movimiento de categorías de vasos

Una vez revisado, si un resultado de flujo completo no se encuentra en la categoría de vaso correcta, puede moverse a la categoría apropiada.

Haga clic izquierdo en el borde, haga clic derecho y suelte; luego arrastre el cursor al tipo de vaso y seleccione la categoría de vaso apropiada como se muestra en la Figura 5. (Se muestran las categorías de pediatría). El resultado del flujo ahora se mostrará en dicha categoría.

FIGURA 5. Selección de movimiento de categorías de vasos

Edición del borde

- 1. Seleccione la fase que desea editar.
- 2. Haga clic izquierdo en el borde para activarlo y editarlo.
 - El borde se pondrá de color púrpura, lo que indica que se puede editar.
- 3. Si se muestra, edite el borde moviendo los puntos de los bordes de spline de puntos.
- 4. Realice una edición a mano alzada haciendo clic y haciendo trazos.
- 5. Haga clic izquierdo en el borde para seleccionar, y luego clic derecho para usar las herramientas, como se describe en la Tabla 2.
- 6. Utilice las herramientas de edición de la ventana gráfica como se describe en la Tabla 3.

Tabla 2: Opciones de clic derecho

Herramienta	Descripción
W	Eliminar una sola ROI en una fase actual

Tabla 2: Opciones de clic derecho

Herramienta	Descripción
	Eliminar todas las ROI en todas las fases
	Seleccionar la herramienta de retoques
	Seleccionar la herramienta de extracción
Se mostrará la categoría del vaso actual.	Mover los resultados de flujo a una categoría diferente

Edición de un rango de fases

- Seleccione el corte deseado.
- 2. Seleccione para mostrar miniaturas de todas las fases de un lugar de corte determinado.
- 3. Seleccione la primera fase del rango de fases que va a editar.
- 4. Mantenga presionada la tecla Shift y seleccione la última fase del rango que se va a editar.
- 5. Edite el borde en la ventana del editor de imágenes.
- 6. Anule la selección del borde haciendo clic en la imagen fuera del borde seleccionado o moviendo el cursor fuera de la ventana del editor.

Tabla 3: Herramientas de edición de ventanas gráficas

Herramienta	Descripción
	Copiar edición al final de las fases
	Copiar edición al inicio de las fases
	Copiar ROI de la fase anterior
	Copiar ROI a la siguiente fase

Tabla 3: Herramientas de edición de ventanas gráficas

Herramienta	Descripción
•	Disminuir el tamaño del ROI
+	Ampliar el tamaño del ROI
	Ir a la fase anterior y siguiente
+ +	Girar ROI hacia la derecha o izquierda
↑	Girar ROI hacia arriba o hacia abajo

Opciones de corrección de la línea de base

Existen tres métodos de corrección de línea de base de flujo para el contraste de fase 2D. Las curvas de flujo que tienen un método de corrección aplicado tendrán puntos de datos de fase sólida.

NOTA: Las imágenes de contraste de fase que se utilizan para el análisis no deben tener ajuste de fase de imagen. El ajuste de fase presente en la imagen invalidará la corrección automática de la línea de base.

Corrección automática de la línea de base

La corrección automática de la línea de base corrige los errores de fase que se producen durante la adquisición de la imagen examinando el error de fase en órganos fijos distantes (por ejemplo, la pared torácica, el hígado, etc.) y ajustando en el espacio los datos con interpolación lineal o de orden superior.

NOTA: Si se crea una serie 2D de magnitud y fase mediante el Flujo Visor 3D/4D, la aplicación creará una serie no corregida y una segunda serie con la corrección de error de fase aplicada. No aplique Auto desde el menú desplegable Corrección de línea de base a la serie etiquetada como "Corregida".

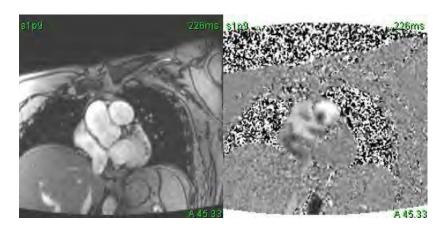
- 1. Genere una curva de flujo utilizando la serie de contraste de fase adecuada.
- 2. Seleccione Auto en el menú desplegable Corrección de línea de base.

NOTA: La corrección automática de línea de base se aplicará automáticamente si la opción **Activar corrección automática de línea de base** está seleccionada en Ajustes.

- 3. La corrección se aplicará con los resultados actualizados que se muestran directamente en el gráfico de flujo.
- 4. Las series que fallan en el análisis de ajuste se indicarán con un símbolo de advertencia, como se muestra en la Figura 6.

FIGURA 6. Fallo en la corrección de línea de base

Tipos de fallos:


- 1 Ajuste de la imagen
- 2 Ruido de la imagen
- 3 Imagen no válida

NOTA: El ajuste de fase presente en la imagen producirá resultados de flujo imprecisos, como se muestra en la Figura 7. Las imágenes de contraste de fase de cine en 2D que se utilizan para el análisis de flujo no deben tener enrollamiento de fase de imagen, como se muestra en la Figura 8.

FIGURA 7. Imágenes de ejemplo que muestran ajuste de fase (flechas blancas)

FIGURA 8. Imágenes de ejemplo sin ajuste de fase

Corrección de fantoma

Para mejorar la precisión de los resultados de contraste de fase y corregir los errores de cambio de fase de la línea de base, se puede usar una adquisición fantoma para calcular este error.

NOTA: La serie de corrección de fantoma debe haberse adquirido con la misma receta y parámetros de exploración que la serie de contraste de fase original. Debe haber una señal de un objeto fijo que llene todo el borde de la serie fantoma.

- Genere una curva de flujo utilizando la serie de contraste de fase adecuada.
- 2. Seleccione la serie fantoma correspondiente en el menú desplegable Corrección de línea de base.
- 3. La corrección se aplicará con los resultados actualizados que se muestran directamente en el gráfico de flujo.

Corrección de borde de fondo

Este método de corrección se puede considerar para los vasos que están rodeados de tejido estático.

NOTA: Para que la corrección sea óptima, el borde de fondo debe colocarse en un tejido estático directamente adyacente y que rodee la región del flujo.

- 1. Genere una curva de flujo utilizando la serie de contraste de fase adecuada.
- 2. Seleccione la ROI de fondo en el menú desplegable Corrección de línea de base.
- 3. Haga clic en para dibujar un borde.
- 4. La corrección se aplicará con los resultados actualizados que se muestran directamente en el gráfico de flujo.

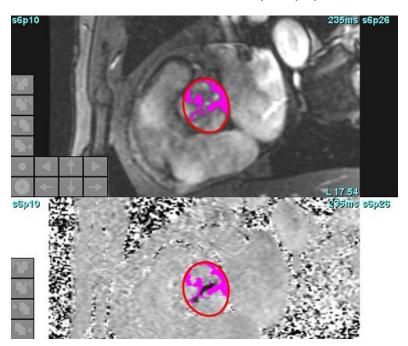
Herramientas de flujo

Opciones de compensación

El menú desplegable del archivo tiene 3 opciones: Fase, Flujo, Dilatación

Tabla 4:

Selección	Descripción
Fase	Cambia la ordenada de la curva de flujo.
Flujo	Cambia el valor de la abscisa de la curva de flujo, que a su vez cambia los valores de línea de base del resultado del flujo.
Dilatación	Cambia uniformemente el radio del vaso segmentado para todas las fases por una cantidad específica de píxeles para incluir píxeles de flujo válidos.


Excluir píxeles de ruido

Esta opción identifica píxeles de baja intensidad (alta fluctuación de velocidades) si están presentes dentro de la ROI, identificados por la superposición rosa como se muestra en la Figura 10, y los excluye del cálculo del flujo. El porcentaje de píxeles de ruido se puede ajustar mediante la barra deslizante.

FIGURA 9. Píxeles de ruido

FIGURA 10. Píxeles de ruido identificados por superposición rosa

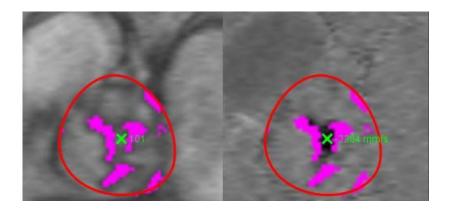
Superposición de color

Para mostrar una superposición de color rojo/azul que represente las velocidades en la imagen de magnitud, haga clic y arrastre la barra deslizante de opacidad de color. Ajuste el rango de velocidad fijando los marcadores azules o rojos como se muestra en la Figura 11. Seleccione **Herramientas > Ajustes > Edición** en la pestaña Global debajo de Flujo para ajustar la opacidad de color. Para eliminar la superposición de color, establezca la opacidad en 0 %.

FIGURA 11. Controles de superposición de color

Corrección del solapamiento de velocidad

Para corregir el solapamiento de velocidad, arrastre el marcador de control de la barra deslizante para el desenvolvimiento de fase. El efecto del cambio se actualizará directamente en la imagen de fase y el gráfico de flujo se actualizará. La corrección del solapamiento puede realizarse sin que haya una ROI en la imagen. Si hay más de una ubicación de corte en la serie, cambiar el ajuste afectará a todas las ubicaciones de corte. Para cambiar la ubicación de un solo corte, utilice la tecla Ctrl o Alt del teclado al cambiar el control de la barra deslizante.



Velocidad pico definida por el usuario

- 1. Seleccione la fase apropiada del ciclo cardíaco.
- 2. Use para colocar el cursor en la imagen de fase.

El cursor se sincroniza con las imágenes de magnitud y fase. El resultado de la velocidad aparece en mm/s en la imagen de fase, al lado del cursor.

FIGURA 12. Velocidad de flujo de píxeles

Selecciones de modo de curva

Tabla 5:

Selección	Modo	Descripción
\bigwedge	Flujo	Curva que representa el volumen de flujo de cada fase en todo el ciclo cardíaco (predeterminado). Cada punto de la curva representa el flujo para esa fase. Se muestra el resultado del flujo neto.
Λ_{λ}	Histograma	Muestra un diagrama de la velocidad de cada píxel dentro de cada región de interés para cada fase del ciclo cardíaco. Se muestran los resultados del gradiente de presión máxima y media.
\sim	Tiempo de hemipresión (PHT)	El tiempo que tarda el gradiente de presión de transmisión pico en disminuir a la mitad. Permite la identificación de la pendiente del gráfico para calcular el PHT y el área de la válvula mitral (AVM).
As	Comparar	Permite la visualización de curvas de dos categorías diferentes.
\wedge	Regurgitante	Calcula el flujo negativo neto (debajo del eje x).

Modo histograma

Seleccione el modo histograma para mostrar un diagrama de velocidades por píxel y el cálculo del pico y el gradiente de presión media.

- 1. Genere una curva de flujo utilizando la serie de contraste de fase adecuada.
- 2. Seleccione
- 3. Haga clic directamente en el gráfico para activar un cursor en forma de cruz en la imagen de fase, que indica la ubicación correspondiente de ese píxel.
- 4. Use los controles de doble flecha en la parte inferior del gráfico para ubicar el valor de velocidad más alto o más bajo (Figura 13).
- 5. Use los controles de flecha única para incrementar ligeramente los valores de velocidad, como se muestra en la Figura 13.
 - **NOTA:** La funcionalidad de localización de la serie, si está en modo histograma, se desactiva cuando se hace clic directamente en la curva de flujo. Cambie al modo de flujo para habilitar la funcionalidad de localización.
 - **NOTA:** Para asegurarse de que se muestre la imagen de magnitud y fase correspondiente, trabaje con una curva de flujo a la vez. Anule la selección de las otras curvas de histograma de la pantalla de gráficos.
 - **NOTA:** Es posible que los estudios analizados usando el modo de histograma con una versión anterior del software suiteHEART® deban volver a analizarse.

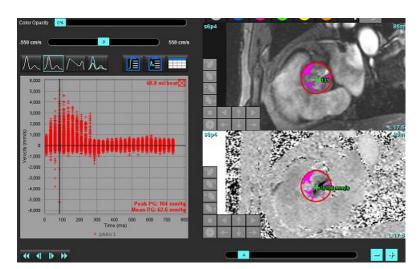
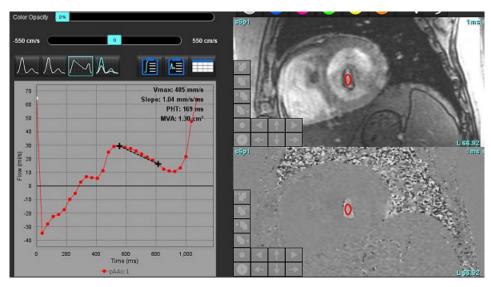


FIGURA 13. Modo histograma

Tiempo de hemipresión


El tiempo de hemipresión (PHT) se puede obtener midiendo la pendiente de desaceleración de la onda E en las imágenes de contraste de fase adquiridas de la válvula mitral. Este modo permite la identificación de la pendiente del gráfico para calcular el PHT y el área de la válvula mitral (AVM).

- 1. Genere una curva de flujo utilizando la serie de contraste de fase adecuada de la válvula mitral.
- 2. Para la replicación de la ROI, use la opción copiar y pegar.

- 4. Haga clic directamente en el diagrama para identificar la velocidad más alta de la porción de desaceleración de la curva.
- 5. Haga clic en un punto final para calcular la pendiente de la curva, como se muestra en la Figura 14.
- 6. Para restablecer el cálculo, coloque el cursor sobre un punto final, haga clic con el botón derecho del ratón y seleccione la papelera.

FIGURA 14. Resultados de tiempo de hemipresión

NOTA: Los resultados del área de la válvula mitral (AVM) y el tiempo de hemipresión (THP) no son válidos en pacientes con insuficiencia aórtica, derivación cardíaca o disminución de la distensibilidad ventricular.

NOTA: La funcionalidad de localización de la serie, si está en modo PHT, se desactiva cuando se hace clic directamente en la curva de flujo. Cambie al modo de flujo para habilitar la funcionalidad de localización.

Referencia:

http://www.csecho.ca/mdmath/?tag=mvaph

Ver Resultados de flujo

Seleccione una de las siguientes opciones para revisar los resultados del flujo en un formato de tabla.

Tabla 6: Opciones de tabla de resultados

Selección	Etiqueta	Descripción		
	Análisis integrado	Muestra los resultados del análisis del panel de flujo. Incluye los resultados de la regurgitación aórtica, mitral, pulmonar y tricúspide, y Qp/Qs. Consulte Análisis integrado en la página 106.		
	Análisis de flujo	Resumen de los resultados por curva de flujo.		
	Tabla de datos	Enumera los parámetros de flujo detallados para cada fase por curva de flujo.		

Cambio de etiqueta de las categorías para el Flujo1, Flujo2

Solo se pueden cambiar las etiquetas de las categorías de Flujo 1 o Flujo 2.

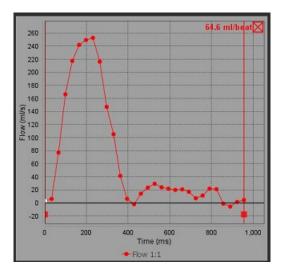
FIGURA 15. Flujo 1, Flujo 2

Cambiar etiqueta

- 1. Haga clic derecho en el Flujo 1 o en el Flujo 2 (Figura 15).
- 2. Ingrese el nuevo nombre de la etiqueta (Figura 16).
- 3. Las nuevas etiquetas aparecerán como información sobre herramientas.

NOTA: La etiqueta de leyenda de curva se asignará a la misma etiqueta.

FIGURA 16. Editar etiqueta de categoría


NOTA: Cambiar las etiquetas de la categoría de flujo cambia la etiqueta del encabezado de flujo para el informe.

Editar leyendas de curvas

1. Haga clic derecho en el Flujo 1:1 en la parte inferior del gráfico de flujo (Figura 17).

NOTA: Si se cambió la etiqueta de la categoría, entonces se mostrará esa etiqueta.

FIGURA 17. Editar leyendas de curvas

2. Ingrese el nuevo nombre de etiqueta.

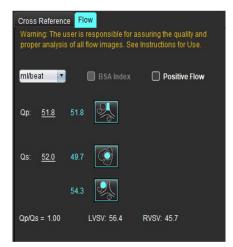
FIGURA 18. Cambiar etiquetas de leyendas de curvas de flujo

NOTA: Las nuevas leyendas de curvas de flujo se guardarán con la plantilla actual.

Análisis integrado

Basado en un método seleccionado por el usuario, el Análisis integrado calcula los volúmenes de regurgitación Qp, Qs, Qp/Qs, aórtico, mitral, pulmonar y tricúspide, y las fracciones de regurgitación (RF%).

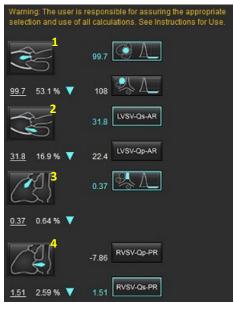
ADVERTENCIA: El usuario es responsable de seleccionar el método para determinar los volúmenes y fracciones de regurgitación aórtica, mitral, pulmonar y tricúspide.


ADVERTENCIA: Es posible que algunos o todos los métodos no sean apropiados, dependiendo de la patología del paciente. El usuario es responsable de determinar qué método, si lo hay, es válido para la interpretación.

ADVERTENCIA: El usuario es responsable de la colocación precisa y la asignación correcta de la categoría de todas las regiones de interés (ROI), incluidas las generadas por el preprocesamiento.

NOTA: El usuario puede establecer el método de cálculo predeterminado para el Análisis integrado seleccionando Herramientas > Preferencias > Edición en el menú desplegable. Las selecciones de método predeterminado son las siguientes: Ninguno, Todos o Último.

Descripción general del análisis integrado (se muestra para adutos)


- ml/latido o l/min selección de unidad
- Índice de selección de ASC (la altura y el peso deben introducirse en la interfaz de informes)
- Selección de resultado de flujo positivo

Selecciones para Qp y Qs

- Qp: Muestra los valores del flujo de la categoría APP
- Qs: Muestra los valores del flujo de la categoría AoAp o AoAm
- Resultados Qp/Qs
- Los resultados del volumen sistólico de VI y VD se muestran en el análisis de la función del eje corto

Los valores Qp o Qs subrayados pueden introducirse manualmente.

Para restablecerlos, borre el valor y pulse intro en el teclado.

El método de cálculo puede ser seleccionado para lo siguiente:

- 1- Regurgitación aórtica y RF%
- 2- Regurgitación mitral y RF%
- 3- Regurgitación pulmonar y RF%
- 4- Regurgitación tricúspide y RF%

Los valores de regurgitación subrayados pueden introducirse manualmente. Para restablecerlos, borre el valor y pulse intro en el teclado.

Tabla 7: Selecciones de Qp/Qs

NOTA: Si una categoría de vaso tiene más de una medición, se utilizará el valor promedio.

NOTA: En el caso de Qp o Qs, el valor puede obtenerse a partir de una sola o de una combinación de las selecciones descritas en la tabla.

Resultado	Selección	Descripción	
Qp		Resultado de flujo de la categoría APP.	
Qp (Pediátrico)		Resultado de flujo de API + APD	
Qs		Resultado de flujo de la categoría AoAp o AoAm. Seleccione los dos tipos de vasos para promediar el resultado de Qs.	
Qs (Pediátrico)		Resultado de flujo de la categoría TSVI.	
Qs (Pediátrico)	+	Resultado del flujo VCS + AoDp	
Qs (Pediátrico)	+ 6	Resultado del flujo VCS + VCI	
Qs (Pediátrico)	+7	Resultado del flujo VCS + AoDd	
Qp/Qs=		El resultado se basa en las selecciones anteriores.	

Calcular Qp/Qs

1. Para utilizar la función de análisis integrado, seleccione FLUJO en la parte superior derecha, como se muestra en la Figura 19.

FIGURA 19. Pestaña de flujo

- 2. Antes de utilizar el Análisis integrado, confirme todas las asignaciones de vasos y los bordes precisos en todas las categorías.
 - Si el vaso segmentado está en la categoría incorrecta, haga un clic derecho del ratón y muévalo a la categoría correcta.
 - Si el vaso segmentado es el vaso incorrecto para esa categoría, elimine la ROI activa y haga clic en
 - Si después de usar la segmentación automática y el vaso no se identifica correctamente, realice una segmentación manual. Consulte Realizar la segmentación automática o manual en la página 92.

ADVERTENCIA: El usuario es responsable de la colocación precisa y la asignación correcta de la categoría de todas las regiones de interés (ROI), incluidas las generadas por el preprocesamiento.

- 3. Para Qp, seleccione
- 4. Para Qs, seleccione o las dos categorías de vasos (los valores de las dos categorías se promediarán).
- 5. El resultado del Qp/Qs se calculará como se muestra en la Figura 20.

FIGURA 20. Resultados de Qp/Qs (se muestra para adultos)

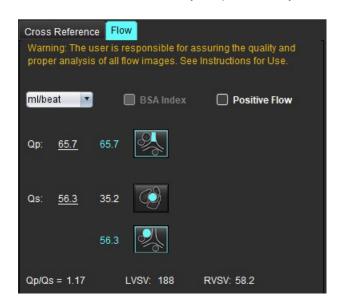



Tabla 8: Métodos de cálculo para el volumen regurgitante

Selección	Tipo de válvula	Descripción del método		
	Aórtica	Directa de la curva de flujo (Proximal)		
	Aórtica	Directa de la curva de flujo (Media)		
de de la	Aórtica (Pediátrico)	Tasa de flujo positivo de TSVI: Qp		
LVSV-Qs-AR	Mitral	Indirecta (El VSVI utilizado se obtiene de los resultados de las funciones del eje corto)		
LVSV-Qp-AR	Mitral	Indirecta (El valor de VSVI utilizado se obtiene de los resultados de las funciones del eje corto)		
	Pulmonar	Directa de la curva de flujo (APP)		
	Pulmonar (Pediátrico)	Directa de la curva de flujo Flujo negativo de API + APD		
RVSV-Qp-PR	Tricúspide	Indirecta (El VSVD utilizado se obtiene de los resultados de las funciones del eje corto)		
RVSV-Qs-PR	Tricúspide	Indirecta (El VSVD utilizado se obtiene de los resultados de las funciones del eje corto)		

Calcular el volumen y la fracción de regurgitación (RF%)

1. Para utilizar la función de análisis integrado, seleccione FLUJO en la parte superior derecha, como se muestra en la Figura 21.

FIGURA 21. Pestaña de flujo

- 2. Antes de utilizar el Análisis integrado, confirme todas las asignaciones de vasos y los bordes precisos en todas las categorías.
 - Si el vaso segmentado está en la categoría incorrecta, haga un clic derecho del ratón y muévalo a la categoría correcta.
 - Si el vaso segmentado es el vaso incorrecto para esa categoría, elimine la ROI activa y haga clic en
 - Si después de usar la segmentación automática y el vaso no se identifica correctamente, realice una segmentación manual. Consulte Realizar la segmentación automática o manual en la página 92.

ADVERTENCIA: El usuario es responsable de la colocación precisa y la asignación correcta de la categoría de todas las regiones de interés (ROI), incluidas las generadas por el preprocesamiento.

3. Seleccione el modo de cálculo. En la Figura 22, la fracción de regurgitación aórtica y de regurgitación se calcula seleccionando y la fracción de regurgitación y regurgitación pulmonar se calcula seleccionando

FIGURA 22. Selección de métodos para la aorta y el pulmón (se muestra se muestra para adultos)

4. El volumen de regurgitación y el RF% se calculan como se muestra en la Figura 22. El valor del denominador utilizado es el VSVI para la aorta y el mitral y el VSVD para la tricúspide y el pulmonar. Para introducir un valor diferente, haga clic izquierdo en el triángulo y escriba un nuevo valor en el campo. Para restablecer el valor original solo tiene que borrar el campo y presionar intro en el teclado, como se muestra en la Figura 23.

FIGURA 23. Denominador RF:

- 5. Si se selecciona más de un método de cálculo, los valores se promedian para el resultado del volumen de regurgitación.
- 6. Para el cálculo de la regurgitación mitral y el RF% es necesario seleccionar un Qp, Qs y un método de regurgitación aórtica, como se muestra en la Figura 24.
- 7. Para el cálculo de la regurgitación tricúspide y el RF% es necesario seleccionar un Qp, Qs y un método de regurgitación pulmonar, como se muestra en la Figura 24.
- 8. Cualquier resultado que sea negativo se considera un resultado no válido y se indicará con un triángulo amarillo como se muestra en la figura 24.

FIGURA 24. Selecciones de métodos (se muestra para adultos)

Revisión de resultados del análisis integrado

Para revisar todos los resultados, seleccione

NOTA: La selección de las unidades de flujo están en la parte superior del panel de Análisis integrado, seleccione ml/latido o l/min.

NOTA: Los resultados pueden ser indexados a ASC seleccionando el índice a ASC en la parte superior del panel de Análisis integrado. Se deben introducir la altura y el peso en la pestaña Historial.

FIGURA 25. Resultados integrados

	Measurement	Value
	Qp (ml/beat)	60.0
	Qs (ml/beat)	71.4
Ø	Qp/Qs	0.84
	Aortic Regurgitant Volume (ml/beat)	0.70
	Aortic Regurgitant Fraction (%)	0.97
	Mitral Regurgitant Volume (ml/beat)	-0.17
	Mitral Regurgitant Fraction (%)	-0.23
	Pulmonic Regurgitant Volume (ml/beat)	1.02
\bigcirc	Pulmonic Regurgitant Fraction (%)	0.67
	Tricuspid Regurgitant Volume (ml/beat)	92.3
	Tricuspid Regurgitant Fraction (%)	60.2

Evaluación miocárdica

El usuario es responsable de la colocación precisa y completa de todas las regiones de interés (ROI), incluidas las generadas o modificadas por los algoritmos de segmentación automática. Los valores cuantitativos generados por el software dependen de la colocación precisa y completa de estas regiones de interés y de los umbrales aplicados.

La función de preprocesamiento del estudio permite el preprocesamiento de realce tardío. Consulte las Instrucciones de uso de suiteDXT.

La herramienta de análisis de evaluación de miocardio (EM) permite la determinación cuantitativa de áreas de diferentes intensidades de señal dentro del miocardio.

Hay cuatro pestañas de análisis disponibles:

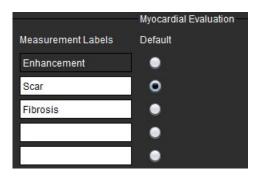
- Realce tardío: determina los segmentos miocárdicos de intensidad de señal alta y baja.
- T2: determina los segmentos miocárdicos de mayor intensidad de señal a partir de técnicas de imagen de sangre negra.
- Diferencial de señal: muestra los resultados de la masa viable, utilizando tanto la realce tardío como el análisis T2 y la relación de intensidad de señal T2 (IS).
- Realce temprano: determina la relación de intensidad de señal del miocardio y el porcentaje de mejora miocárdica absoluta a partir de imágenes ponderadas de T1.

ADVERTENCIA: Tras el preprocesamiento, el usuario es responsable de evaluar la precisión del análisis completo y de hacer las correcciones necesarias. Una revisión exhaustiva debe incluir lo siguiente:

- Colocación/identificación de la ROI
- Ubicación de la inserción del VD
- Umbral de intensidad de señal

ADVERTENCIA: La aplicación solo ayuda a realizar el análisis de las imágenes y no proporciona una interpretación clínica de los resultados de forma automática. El uso y la colocación de mediciones cuantitativas quedan a criterio del usuario. Podría obtenerse un diagnóstico erróneo si las mediciones son inexactas. Las mediciones solo deben ser creadas por un usuario debidamente capacitado y calificado.

Pestañas de análisis



Definir etiquetas de mediciones de resultados

Las etiquetas de medición de resultados pueden ser definidas por el usuario; la etiqueta predeterminada es Mejora.

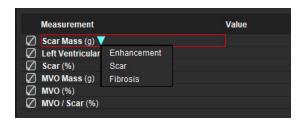
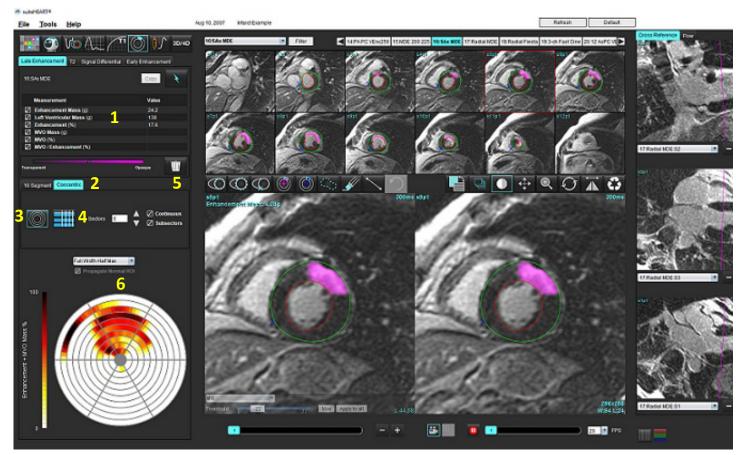

- 1. Seleccione Herramientas> Preferencias > Editar.
- 2. Escriba etiquetas adicionales en los campos en blanco, como se muestra en la Figura 1.
- Seleccione la etiqueta predeterminada.
 Esta etiqueta se utilizará para todos los nuevos análisis.
- 4. Haga clic en Guardar y salir.

FIGURA 1. Definir etiquetas

Para cambiar la etiqueta de la tabla de medición, haga clic izquierdo en la flecha para seleccionar una nueva etiqueta.


FIGURA 2. Etiquetas de mediciones de ME

Procedimiento de análisis de Realce tardío

- 1. Seleccione
- 2. Seleccione la pestaña Realce tardío.
- 3. Seleccione la serie de eje corto adecuada.
- 4. Seleccione para realizar la segmentación automática.
- 5. Revise todos los trazos endocárdicos y epicárdicos, el punto de inserción del VD y el umbral en cada corte. Edite el umbral según sea necesario.

FIGURA 3. Análisis de evaluación del miocardio

- 1. Tabla de resultados, 2. Selección de diagrama polar, 3. Monitor de diagrama polar, 4. Monitor de la tabla de resultados, 5. Eliminar,
- 6. Diagrama polar
- 6. Para realizar una segmentación manual, trace el endocardio del VI en el corte más basal seleccionando

7. Trace el epicardio del VI seleccionando

- 8. Coloque el punto de inserción inferior del VD seleccionando
- 9. Mueva el cursor fuera de la ventana del editor para completar la ROI.
- 10. Repita los pasos 6 a 9 hasta que se segmente todo el ventrículo.
- 11. Confirme la clasificación base, media y apical.

Selección de umbral

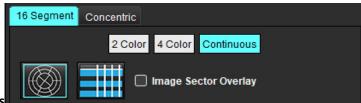

Seleccione el algoritmo de umbral apropiado del menú desplegable de archivos (Figura 4).

FIGURA 4. Selección de algoritmo de umbral

- 2. Si es necesario, haga clic en para maximizar el valor umbral para ese segmento. Haga clic en para aplicar ese valor a todos los cortes. Utilice la barra deslizante para ajustar el algoritmo de umbral para cada corte si es necesario.
- 3. Para obtener resultados promedio de +2 a +7 SD, coloque una ROI normal en un segmento de miocardio normal. Esta ROI se copia en todos los segmentos si se marca Replicar ROI normal.

Edición de umbral

2. Para agregar regiones de baja intensidad de señal, seleccione

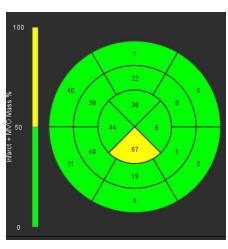


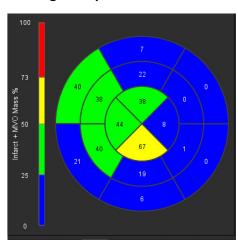
3. Para eliminar las regiones de intensidad de señal, seleccione las herramientas borrador pequeño o borrador grande.

Formatos de visualización de diagrama polar

La herramienta de análisis ME proporciona 2 formatos de diagrama polar: 16 Segmentos y Concéntrico

Opción 1: Diagrama polar de 16 segmentos




- Seleccione la pestaña 16 Segmentos
- 2. Seleccione 2 colores, 4 colores o continuo.
 - Las asignaciones de color se pueden definir haciendo clic en la barra de escala de color.
 - Para cambiar los valores de porcentaje, haga clic y arrastre directamente en el divisor de color.

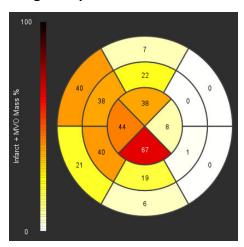

Diagrama polar de 2 colores

Diagrama polar de 4 colores

Diagrama polar de color continuo

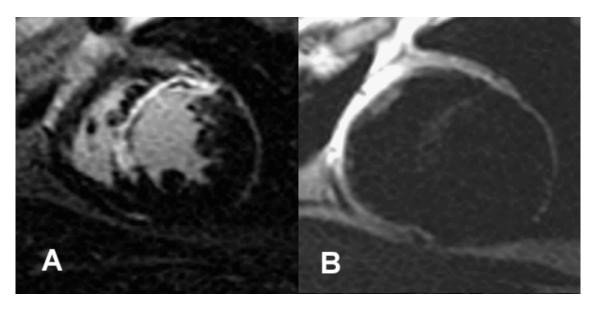
3. Seleccione para mostrar la tabla de resumen de diagrama polar.

Opción 2: Formato de corte por corte

Seleccione la pestaña Concéntrico.

FIGURA 6. Pestaña Concéntrico

La pestaña Concéntrico proporciona los ajustes que cambian el formato del diagrama polar a un formato corte por corte, donde cada anillo representa un corte. El número de anillos está determinado por el número de cortes analizados.

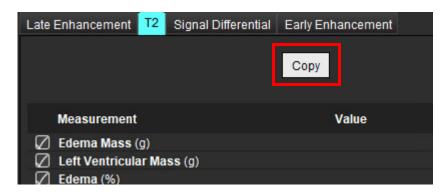

- 2. Seleccione el número de sectores.
- 3. Verifique los subsectores para mostrar los cambios en el porcentaje de masa de ROI dentro del sector.
 - Cuando se seleccionan subsectores se aplica una función de suavizado.
- 4. Haga clic en la casilla de verificación **Continuo** para cambiar el diagrama polar al porcentaje de intensidad de la señal y codifique los valores en un espectro continuo de 0-100 %.

Haga clic en

para eliminar bordes.

NOTA: El umbral semiautomático para el análisis de Realce tardío funciona de manera óptima en imágenes de evaluación de miocardio de alta calidad, como se muestra a continuación (Imagen A). En imágenes adquiridas sin señal de la sangre acumulada (Imagen B) o tiempo de inversión incorrecto, el usuario deberá establecer subjetivamente el umbral.

FIGURA 7. Imágenes de realce tardío del miocardio



Análisis T2

- 1. Seleccione la pestaña T2.
- 2. Si la serie de Realce tardío se ha analizado previamente, las ROI se pueden copiar en la serie T2 seleccionando Copiar (ver la Figura 8).

NOTA: Para copiar la ROI, se requiere que el número de cortes coincida con cada serie para obtener resultados precisos; si el número de cortes no coincide, el botón Copiar no estará disponible. El proceso de importación DICOM se puede utilizar para crear una serie adecuada que contenga el mismo número de sectores. Los parámetros de adquisición, como la matriz y el FOV, deben ser los mismos para cada serie a fin de obtener mejores resultados. Después de realizar una copia, revise cuidadosamente las ROI en todas las ubicaciones de los cortes y edite según corresponda.

FIGURA 8. Botón Copiar

- 3. Si no hay un análisis de Realce tardío anterior, las ROI se pueden crear manualmente.
- 4. Trace el endocardio del VI en la porción más basal seleccionando

5. Trace el epicardio del VI seleccionando

6. Marque el punto de inserción del VD inferior seleccionando

- 7. Mueva el cursor fuera de la ventana del editor para completar la ROI.
- 8. Repita los pasos 4-7 hasta que todo el ventrículo esté segmentado.
- 9. Para realizar un umbral de desviación estándar 2, seleccione Agregar ROI normal y coloque una ROI en un segmento de miocardio normal. Esta ROI se copia en todos los segmentos si se marca Replicar ROI normal. Revise la ubicación de cada segmento y ajuste la ROI según sea necesario.

NOTA: Cuando se proporciona la ROI del músculo esquelético y la ROI normal, el software realiza el siguiente cálculo: T2 miocárdico normalizado SI = miocardio SI/músculo esquelético SI;

Cálculo de umbral: Umbral = 2 * STD NORMAL + AVG NORMAL

- 10. Seleccione el primer corte basal y utilice el menú desplegable de clasificación de cortes para seleccionar Base. Confirme las clasificaciones de los cortes restantes. Utilice la barra deslizante para ajustar el algoritmo de umbral para cada corte si es necesario.
- 11. Para realizar el análisis de intensidad de señal T2, seleccione Agregar ROI del músculo esquelético y coloque una ROI en el músculo esquelético. Esta ROI se copia en todas las imágenes. Revise la ubicación de cada segmento y ajuste la ROI según sea necesario.

NOTA: Las imágenes de sangre negra pueden tener una supresión de flujo insuficiente, lo que podría dar como resultado un análisis y umbral de intensidad de señal inexactos. Una supresión del flujo insuficiente puede dar lugar a una alta intensidad de la señal que se puede confundir con un edema de miocardio. Los artefactos de baja intensidad de señal pueden causar un resultado bajo falso.

Edición

Para agregar regiones de alta intensidad de señal T2, seleccione

Para borrar regiones de alta intensidad de señal T2, seleccione las herramientas borrador pequeño o borrador grande.

Haga clic en para eliminar bordes

Análisis combinado

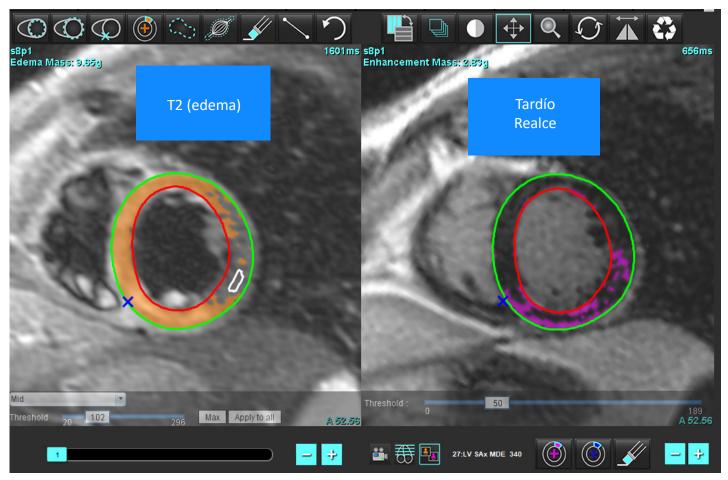
Realce tardío y T2

El modo de análisis combinado permite el análisis lado a lado con herramientas de edición para imágenes de Realce tardío y T2 (edema).

NOTA: Para habilitar el modo de análisis combinado, el análisis de una serie de Realce tardío de eje corto debe completarse primero utilizando la pestaña Realce tardío. Las imágenes T2 (edema) deben estar presentes en el mismo estudio.

2. Seleccione un estudio apropiado con imágenes de Realce tardío y T2 (edema). Complete el procedimiento de análisis para el Realce tardío.

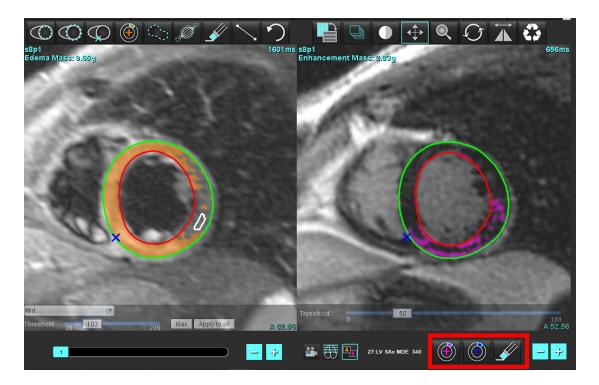
NOTA: Revise los umbrales para cada corte de eje corto en la pestaña Mejora tardía antes de seleccionar el modo de análisis combinado.



3. Seleccione la pestaña T2 y complete el procedimiento de análisis para la serie T2.

4. Seleccione para comenzar el análisis combinado, como se muestra en la Figura 9.

FIGURA 9. Modo de análisis combinado



- 5. Tras la selección, la serie de Realce tardío analizada previamente aparecerán en la ventana de vista de modo. Esta ventana se convierte en una ventana de editor de las imágenes de Realce tardío.
- 6. Para editar las imágenes de Realce tardío, use las herramientas de edición ubicadas debajo de la ventana gráfica de la imagen como se muestra en la Figura 10.

NOTA: Confirme todas las actualizaciones de los resultados directamente en la pestaña Realce tardío.

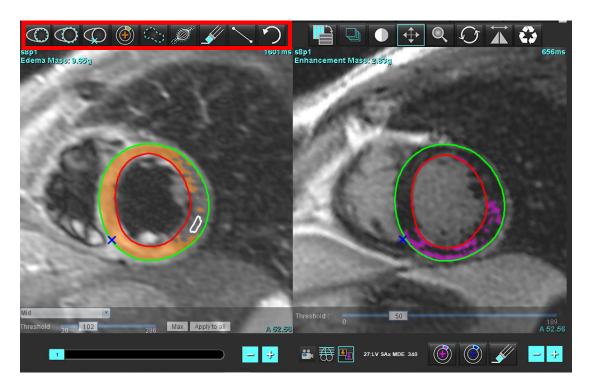
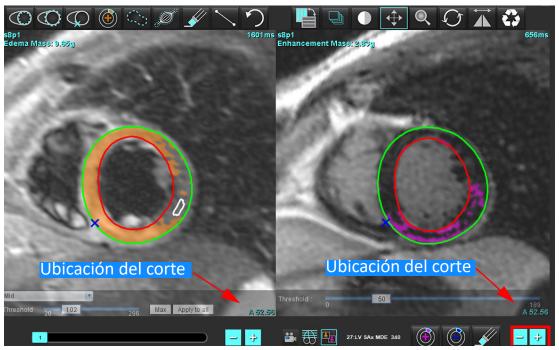

NOTA: Si se eliminan las ROI del endocardio VI o del epicardio VI, regrese a la pestaña Realce tardío para volver a trazar.

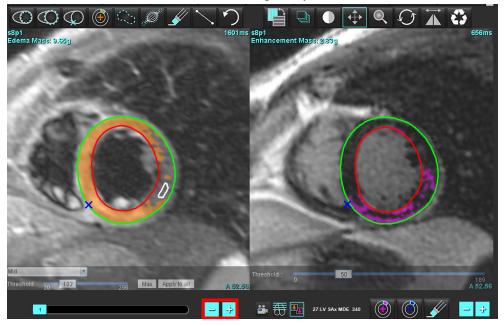
FIGURA 10. Herramientas de edición de realce tardío

7. Para editar la serie T2 (Edema) a la izquierda, use las herramientas de edición ubicadas encima de la ventana gráfica de la imagen, como se muestra en Figura 11.


FIGURA 11. Herramientas de análisis de T2 (edema)

- 8. Use los botones menos y más para navegar a un nivel de corte diferente para la serie de realce tardío, como se muestra en la Figura 12.
 - La información de ubicación del sector se encuentra en la esquina inferior derecha de cada ventana gráfica.

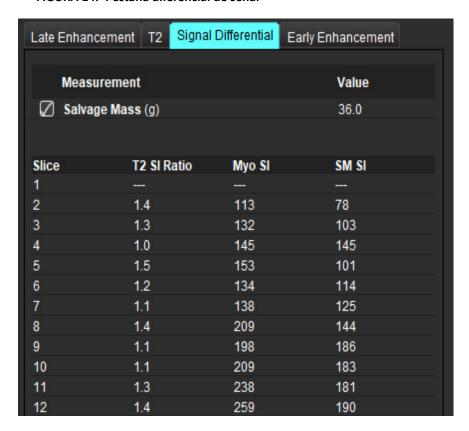
NOTA: La ubicación de los cortes que se muestra para el Realce tardío se determina por la ubicación de los cortes en la ventana del editor T2 (Edema). Use los botones menos/más para anular esta selección.


FIGURA 12. Realce tardío de los controles de navegación del corte

9. Use los botones menos y más ubicados debajo de la ventana gráfica del editor T2 (edema) para navegar hacia un nivel de corte diferente, tanto para el realce tardío como para la serie T2 (edema), como se muestra en la Figura 13.

NOTA: En el modo de análisis combinado, los botones más y menos en la izquierda vinculan la navegación entre cortes de ambas ventanas gráficas.

FIGURA 13. Controles combinados de navegación por sectores

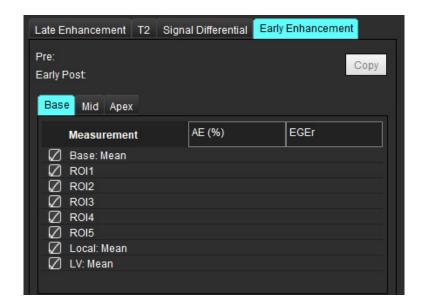

Resultados diferenciales de señal

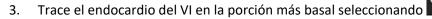
Seleccione la pestaña Diferencial de señal

NOTA: El Realce tardío y el análisis T2 deben completarse para obtener los resultados de la masa viable. El análisis T2 debe completarse con la colocación de la ROI del músculo esquelético para el análisis de intensidad de señal T2 (IS).

NOTA: Si el resultado T2 (Edema) es menor que el resultado de Mejora tardía (Infarto + MVO), el resultado de la Masa viable estará en blanco.

FIGURA 14. Pestaña diferencial de señal

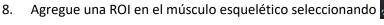



Análisis de Realce temprano

Las imágenes necesarias para el análisis son una pila de eje corto usando una secuencia de eco de espín sincronizado T1, Realce tardío y temprano. El análisis permite la segmentación manual del epicardio y el endocardio en la serie inicial con una función de copiar para el cálculo del % de Realce absoluto (AE) e Índice temprano de realce de gadolinio (EGEr). Se puede utilizar una ROI local para analizar las regiones del miocardio.

NOTA: Las imágenes de sangre negra pueden tener una supresión de flujo insuficiente, lo que podría dar como resultado un análisis y umbral de intensidad de señal inexactos.

- 1. Seleccione la pestaña de Realce temprano.
- 2. Seleccione la serie ponderada de T1 de eje corto adecuada.


4. Trace el epicardio del VI seleccionando

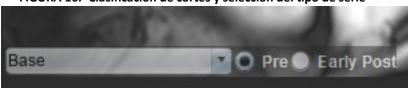
5. Marque el punto de inserción del VD inferior seleccionando

- 6. Mueva el cursor fuera de la ventana del editor para completar la ROI.
- 7. Repita los pasos 3-6 hasta que todo el ventrículo esté segmentado.

- 9. Seleccione una ubicación del corte basal. Haga clic en el menú desplegable Clasificación de cortes y seleccione Base.
- 10. Confirme las clasificaciones base, media y apical de cada corte.
- 11. Para analizar una región miocárdica específica, seleccione y trace una ROI en e

FIGURA 15. Clasificación de cortes y selección del tipo de serie

- 12. Seleccione el tipo de serie anterior.
 - Si la serie Inmediatamente posterior fue segmentada primero, seleccione Inmediatamente posterior.
- 13. Seleccione el tipo de serie Inmediatamente posterior ponderada de T1 de eje corto adecuada.
 - Si la serie Inmediatamente posterior fue segmentada primero, seleccione la serie anterior.
- 14. Seleccione copiar.
- 15. Revise todos los trazos endocárdicos y epicárdicos, la inserción del VD y las colocaciones del músculo esquelético y edite según sea necesario.
- 16. Las ROI solo pueden copiarse cuando se han completado todas las ROI y la inserción de VD, la clasificación de los cortes y el tipo de serie (pasos 3-12) en la serie seleccionada.
 - NOTA: Si se elimina un trazo endocárdico o epicárdico, utilice la función Deshacer.
 - **NOTA:** La ROI esquelética se puede ajustar en cada ubicación del corte. Si se elimina, se tendrá que volver a hacer el análisis.
- 17. Haga clic en y seleccione **TODOS: Realce temprano** para eliminar todos los análisis.
 - **NOTA:** Para copiar la ROI, se requiere que el número de cortes coincida con cada serie para obtener resultados precisos; si el número de cortes no coincide, el botón Copiar no estará disponible. El proceso de importación DICOM se puede utilizar para crear una serie adecuada que contenga el mismo número de sectores.
 - **NOTA:** Los parámetros de adquisición, como la matriz y el FOV, deben ser los mismos para cada serie a fin de obtener mejores resultados. Después de realizar una copia, revise cuidadosamente las ROI en todas las ubicaciones de los cortes y edite según corresponda.


Herramienta de ROI local

- 1. Seleccione la serie de Realce temprano ponderada de T1 de eje corto adecuada.
- 2. Trace una ROI local en la región específica del miocardio seleccionando

- 3. Agregue una ROI en el músculo esquelético seleccionando a
- 4. Seleccione la clasificación de corte apropiada y el tipo de serie como se muestra en la Figura 16.

FIGURA 16. Clasificación de cortes y selección del tipo de serie

- 5. Seleccione el tipo de serie Inmediatamente posterior ponderada de T1 de eje corto adecuada.
- 6. Seleccione copiar.
- 7. Haga clic en y seleccione **TODOS**: **Realce temprano** para eliminar todos los análisis.

Referencias recomendadas

Abdel-Aty H, Boyé P, Zagrosek A, Wassmuth R, Kumar A, Messroghli D, Bock P, Dietz R, Friedrich MG, Schulz-Menger J. Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches. J Am Coll Cardiol. 2005 Jun 7;45(11):1815-22. doi: 10.1016/j.jacc.2004.11.069. PMID: 15936612.

Amado LC, Gerber BL, Gupta SN, Rettmann DW, Szarf G, Schock R, Nasir K, Kraitchman DL, Lima JA. Accurate and objective infarct sizing by contrast-enhanced magnetic resonance imaging in a canine myocardial infarction model. J Am Coll Cardiol. 2004 Dec 21;44(12):2383-9. doi: 10.1016/j.jacc.2004.09.020. PMID: 15607402.

Berry C, Kellman P, Mancini C, Chen MY, Bandettini WP, Lowrey T, Hsu LY, Aletras AH, Arai AE. Magnetic resonance imaging delineates the ischemic area at risk and myocardial salvage in patients with acute myocardial infarction. Circ Cardiovasc Imaging. 2010 Sep;3(5):527-35. doi: 10.1161/CIRCIMAGING.109.900761. Epub 2010 Jul 14. PMID: 20631034; PMCID: PMC2966468.

Ferreira VM, Schulz-Menger J, Holmvang G, et al. Cardiovascular Magnetic Resonance in Nonischemic Myocardial Inflammation: Expert Recommendations. J Am Coll Cardiol. 2018;72(24):3158-3176. doi:10.1016/j.jacc.2018.09.072.

Galea N, Francone M, Fiorelli A, Noce V, Giannetta E, Chimenti C, Frustaci A, Catalano C, Carbone I. Early myocardial gadolinium enhancement in patients with myocarditis: Validation of "Lake Louise consensus" criteria using a single bolus of 0.1mmol/Kg of a high relaxivity gadolinium-based contrast agent. Eur J Radiol. 2017 Oct;95:89-95. doi: 10.1016/j.ejrad.2017.07.008. Epub 2017 Jul 27. PMID: 28987703.

Análisis de mapeo T1

Esta característica permite la cuantificación de la señal del tiempo de relajación longitudinal de la red de espín (T1). La aplicación es compatible con el análisis T1 para imágenes nativas (no mejoradas) y de mejora posterior y el cálculo de la fracción de volumen extracelular (VCE).

Imágenes requeridas: Imágenes de recuperación de inversión o saturación con tiempos de inversión variables (TI) o mapas en línea. Las series que tienen aplicada la corrección de movimiento son las recomendadas para el análisis. Se recomiendan ubicaciones representativas de corte para la base ventricular izquierda, medio y ápice.

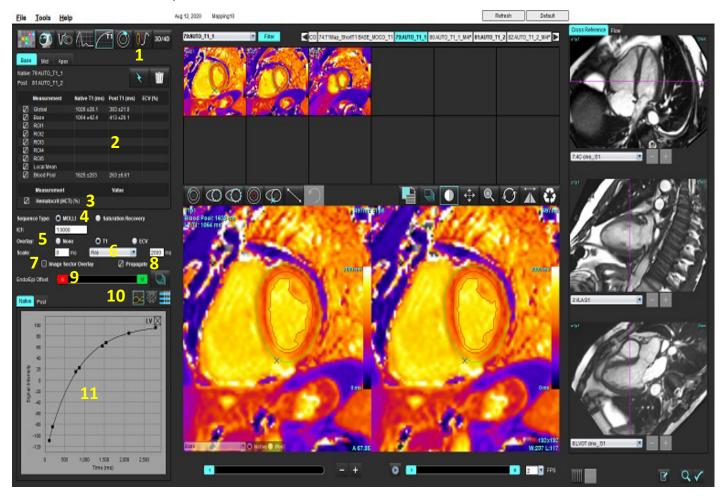
Para obtener una guía más detallada sobre cómo realizar el mapeo T1, consulte el siguiente artículo:

Messroghli, D.R., Moon, J.C., Ferreira, V.M. et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson 19, 75 (2017). https://doi.org/10.1186/s12968-017-0389-8

ADVERTENCIA: Tras el preprocesamiento, el usuario es responsable de evaluar la precisión del análisis completo y de hacer las correcciones necesarias. Una revisión exhaustiva debe incluir lo siguiente:

- Colocación/identificación de la ROI
- Ubicación de la inserción del VD

ADVERTENCIA: La aplicación solo ayuda a realizar el análisis de las imágenes y no proporciona resultados cuantificables de forma automática. El uso y la colocación de mediciones cuantitativas quedan a criterio del usuario. Podría obtenerse un diagnóstico erróneo si las mediciones son inexactas. Las mediciones solo deben ser creadas por un usuario debidamente capacitado y calificado.



ADVERTENCIA: El usuario es responsable de la colocación precisa de todas las regiones de interés (ROI), incluidas las generadas por segmentación automática.

NOTA: Para configurar los ajustes de mapeo T1, seleccione **Herramientas > Ajustes > Editar**. Seleccione la pestaña Mapeo T1/ T2.

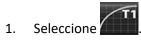
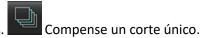

NOTA: Se recomienda configurar la **Composición automática de series para análisis** en ajustes para su tipo de escáner. El análisis requiere que todas las ubicaciones del corte aparezcan en una sola serie. Seleccione **Herramientas> Preferencias > Editar**. Seleccione la pestaña Mapeo T1/T2.

FIGURA 1. Interfaz de mapeo T1

- 1. Segmentación automática, 2. Resultados T1, 3. Registro de hematocrito, 4. Selección de tipo de secuencia,
- 5. Selecciones de superposición de mapa de colores, 6. Opciones de mapa de colores, 7. Mostrar superposición del sector,
- 8. Propagación de edición, 9. Compensación de endo/epi, 10. Curva, diagrama polar de 16 segmentos o tabla, 11. Curvas T1

Realizar un análisis



- 2. Seleccione la serie temporal o de mapa correspondiente.
- 3. El mapa de colores se mostrará automáticamente si se seleccionó el ajuste de superposición.
- 4. Para seleccionar una escala de colores diferente, utilice el menú desplegable de archivo.
- 5. Para crear un resultado Global T1, seleccione
- 6. Revise todos los trazos endocárdicos y epicárdicos, el punto de inserción del VD y la colocación de la sangre acumulada.
- 7. Edite los bordes inexactos.
- 8. Use la compensación de endo (rojo) o epi (verde) para ajustar los bordes

Propague la compensación a todos los cortes.

- 9. Para editar un solo tiempo de inversión, desmarque la casilla Propagate
- 10. Confirme la clasificación de cortes de cada ubicación del corte y tipo de serie.

NOTA: Si una pila de imágenes de eje corto se segmenta, el resultado T1 para la Base, Media o Ápice y los sectores del diagrama polar de 16 segmentos se promediarán según la clasificación de cortes. El resultado T1 de sangre acumulada no se promediará.

- 11. Para calcularla, el FVE realiza la segmentación automática en las series posterior y nativa.
- 12. Revise todos los trazos endocárdicos y epicárdicos, el punto de inserción del VD y la colocación de la sangre acumulada en ambas series.
- 13. Para medir un segmento del miocardio, seleccione

NOTA: Use copiar/pegar para copiar un ROI local de la imagen nativa a la imagen posterior si hay que calcular el FVE.

NOTA: Se pueden crear hasta cinco mediciones de ROI locales en una imagen para la Base, Media y Ápice.

- 14. Seleccione para colocar una ROI de sangre acumulada, si es necesario.
- 15. Ingrese el valor del hematocrito (HCT).
- 16. El resultado del FVE (%) se mostrará en la tabla de resultados.
- 17. Se puede realizar la segmentación manual.
 - Trace el endocardio del VI seleccionando

• Trace el epicardio del VI seleccionando

• Marque el punto de inserción del VD seleccionando

• Si se debe calcular el FVE, coloque la ROI de sangre acumulada seleccionando

• Confirme la clasificación de cortes de cada ubicación del corte y tipo de serie.

Referencias recomendadas

Wong. et al,. "Association Between Extracellular Matrix Expansion Quantified by Cardiovascular Magnetic Resonance and Short-Term Mortality." Circulation (2012):126:1206-1216.

Mapa polar de 16 segmentos

NOTA: El diagrama polar de FVE requiere que se complete el análisis de FVE.

- Complete el análisis Global T1 para las pestañas Base, Media o Ápice. 1.
- Confirme el punto de inserción del VD para cada ubicación del corte. 2.
- Confirme la clasificación de cortes y el tipo de serie correctos. 3.

Seleccione el diagrama polar de 16 segmentos 4.

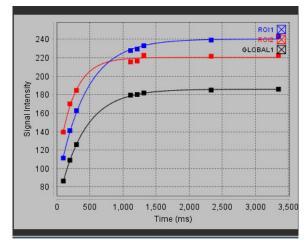
- Image Sector Overlay Seleccione para mostrar la superposición del sector directamente en la imagen. 5.
- Seleccione Gráficos para volver a las curvas T1, si se analizó la serie temporal. 6.

Formato de los valores de resultado de T1

Resultado	Imágenes DICOM	Imágenes de mapa
Global	media +/- std.	media +/- std.
Base/Media/Ápice	valor +/- error	media +/- std.
ROI locales	valor +/- error	media +/- std.
Local	media +/- std.	media +/- std.
Sangre acumulada	valor +/- error	media +/- std.

Eliminar bordes

Haga clic en


n Marie de la interfaz para eliminar **TODOS** los bordes de la serie seleccionada.

Haga clic izquierdo sobre un borde seguido de un clic derecho en el ratón para eliminar un solo borde o seleccione para eliminar los bordes en todos los puntos de tiempo.

Revisar las curvas T1

- Los resultados de ajuste de la curva muestran el comportamiento de la señal de los datos de la imagen. En casos de artefactos de imagen debido a un registro incorrecto, artefactos respiratorios o arritmias, el ajuste de la curva puede no ser óptimo.
- 2. Se puede eliminar un punto de intensidad de señal del cálculo haciendo clic directamente en el punto del gráfico y seleccionando el borde de la imagen que se vuelve púrpura.
- 3. Seleccione eliminar desde el botón derecho del ratón (haga clic y mantenga presionado) o seleccione eliminar el teclado.

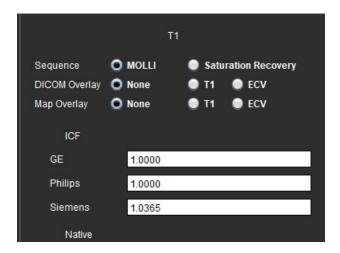
NOTA: La curva que se muestra solo se genera si se usa la serie temporal para el análisis.

ADVERTENCIA: Es necesario que un usuario debidamente capacitado y calificado revise los resultados del ajuste de la curva T1.

Resultado	Referencia de ecuaciones	Tipo de ajuste
T1 Look-Locker (MOLLI)	y = AB exp (-t / T1*)	Ajuste de curva no lineal, utilizando un algoritmo de Levenberg-Marquardt *

Referencias recomendadas

^{*}Messroghli D. R. et al,. "Modified Look-Locker Inversion Recovery (MOLLI) for High Resolution T1 Mapping of the Heart." Magnetic Resonance in Medicine (2004) 52: 141-146.


Inversion Correction Factor (ICF) Siemens MyoMaps

Para obtener los resultados de T1 al analizar las imágenes de la serie temporal, que son similares al mapa T1 generado con escáner, confirme el pulso de inversión eficiente utilizado para los protocolos MOLLI de MyoMaps. Si indica "Mapa T1 de IR no selectivo" en el escáner en la tarjeta Contraste/Común de la sección Preparación magnética, el factor de corrección de inversión recomendado es FCI= 1.0365. Para más detalles, recomendamos que se ponga en contacto con el especialista de atención sobre aplicaciones de Siemens.

Si está analizando las imágenes de la serie temporal, ingrese el FCI correcto en los ajustes, como se muestra en la Figura 2.

- 1. Seleccione Herramientas > Preferencias > Editar.
- 2. Seleccione la pestaña Mapeo T1/T2.
- 3. Introduzca el FCI de acuerdo con el tipo de proveedor.

FIGURA 2. Preferencias de mapeo T1

Referencias recomendadas

Kellman, P., Hansen, M.S. T1-mapping in the heart: accuracy and precision. J Cardiovasc Magn Reson 16, 2 (2014). https://doi.org/10.1186/1532-429X-16-2

Análisis de mapeo T2

Esta función permite la cuantificación de la señal del tiempo de relajación T2. El mapeo T2 es una técnica de caracterización de tejidos.

Imágenes requeridas: Secuencia de preparación de T2 con una lectura de precesión libre en estado estacionario con tiempos de eco (TE) variables o mapas en línea. Las series que tienen aplicada la corrección de movimiento son las recomendadas para el análisis. Se recomiendan ubicaciones representativas de corte para la base ventricular izquierda, medio y ápice.

Para el algoritmo no lineal de 2 puntos, la ecuación es y = a * exp (-TE/T2), donde TE es el tiempo de eco y T2, la duración de la preparación, según la secuencia.

Para el algoritmo no lineal de 3 puntos, la ecuación es y = a * exp (-TE/T2) + c, donde a, T2 y c son coeficientes (parámetros que se calculan mediante el ajuste).

Para el algoritmo lineal de 2 puntos, la ecuación es Y = A - TE/T2, donde Y = log(y) y A = log(a).

NOTA: Para el ajuste de 2 puntos, ya sea lineal o no lineal, no se realiza la resta en segundo plano.

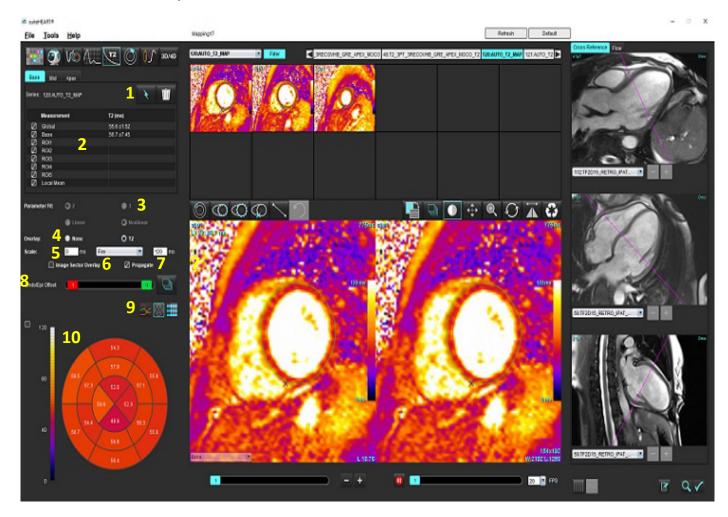
Para obtener una guía más detallada sobre cómo realizar el mapeo T2, consulte el siguiente artículo:

Messroghli, D.R., Moon, J.C., Ferreira, V.M. et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson 19, 75 (2017). https://doi.org/10.1186/s12968-017-0389-8

ADVERTENCIA: Tras el preprocesamiento, el usuario es responsable de evaluar la precisión del análisis completo y de hacer las correcciones necesarias. Una revisión exhaustiva debe incluir lo siguiente:

- Colocación/identificación de la ROI
- Ubicación de la inserción del VD

ADVERTENCIA: La aplicación solo ayuda a realizar el análisis de las imágenes y no proporciona resultados cuantificables de forma automática. El uso y la colocación de mediciones cuantitativas quedan a criterio del usuario. Podría obtenerse un diagnóstico erróneo si las mediciones son inexactas. Las mediciones solo deben ser creadas por un usuario debidamente capacitado y calificado.



ADVERTENCIA: El usuario es responsable de la colocación precisa de todas las regiones de interés (ROI), incluidas las generadas por segmentación automática.

NOTA: Para configurar los ajustes de mapeo T2, seleccione Herramientas > Ajustes > Editar. Seleccione la pestaña Mapeo T1/T2.

NOTA: Se recomienda configurar la **Composición automática de series para análisis** en ajustes para su tipo de escáner. El análisis requiere que todas las ubicaciones del corte aparezcan en una sola serie. Seleccione Herramientas> Preferencias > Editar. Seleccione la pestaña Mapeo T1/T2.

FIGURA 1. Interfaz de mapeo T2

- 1. Segmentación automática, 2. Resultados T2, 3. Selección de ajuste de parámetros 4. Selecciones de superposición de mapa de colores,
- 5. Opciones de mapa de colores 6. Mostrar superposición del sector, 7. Propagación de edición, 8. Compensación endo/epi,
- 9. Curva, diagrama polar de 16 segmentos o tabla, 10. Diagrama polar

Realizar un análisis

- 1. Seleccione
- 2. Seleccione la serie temporal o de mapa correspondiente.
- 3. Si se está analizando la serie temporal, seleccione el método de ajuste.

NOTA: El algoritmo de ajuste no lineal no estima el ruido de fondo.

- 4. Si lo desea, configure el ajuste de superposición para que muestre el mapa de colores automáticamente.
- 5. Utilice el menú desplegable de archivo para seleccionar una escala de color diferente.
- 6. Para crear un resultado Global T2, seleccione

- 7. Revise todos los trazos endocárdicos y epicárdicos y el punto de inserción del VD.
- 8. Edite los bordes inexactos.
- 9. Use la compensación de endo (rojo) o epi (verde) para ajustar los bordes

Propague la compensación a todos los cortes.

🖁 Compense un corte único.

- 10. Para editar un solo tiempo de eco, desmarque la casilla Propagate
- 11. Confirme la clasificación de cortes de cada ubicación del corte y tipo de serie.

NOTA: Si una pila de imágenes de eje corto se segmenta, el resultado T2 para la Base, Media o Ápice y los sectores del diagrama polar de 16 segmentos se promediarán según la clasificación de cortes.

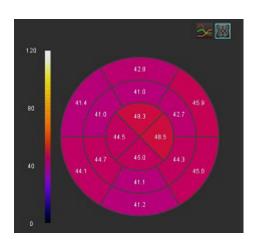
12. Para medir un segmento del miocardio, seleccione

NOTA: Se pueden crear hasta cinco mediciones de ROI locales en una imagen para la Base, Media y Ápice.

- 13. Se puede realizar la segmentación manual.
 - Trace el endocardio del VI seleccionando

• Trace el epicardio del VI seleccionando

• Marque el punto de inserción del VD seleccionando



• Confirme la clasificación de cortes de cada ubicación de corte.

Mapa polar de 16 segmentos

- 1. Complete el análisis Global T2 para la Base, Media y Ápice.
- 2. Confirme el punto de inserción del VD para cada ubicación del corte.
- 3. Confirme la clasificación de cortes correctas.
- 4. Seleccione el diagrama polar de 16 segmentos

- 5. Seleccione mage Sector Overlay para mostrar la superposición del sector directamente en la imagen.
- 6. Seleccione Gráficos para volver a las curvas T1 si se analizó la serie temporal.

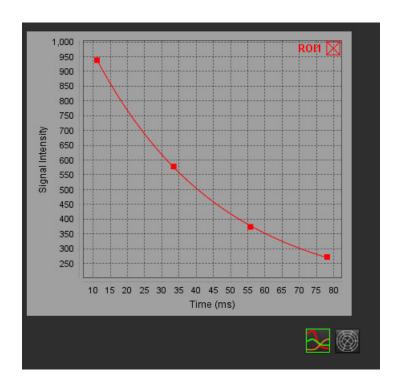
Formato de los valores de resultado de T2

Resultado	Imágenes DICOM	Imágenes de mapa
Global	media +/- std.	media +/- std.
Base/Media/Ápice	valor +/- error	media +/- std.
ROI locales	valor +/- error	media +/- std.
Local	media +/- std.	media +/- std.

Eliminar bordes

Haga clic en de la interfaz para eliminar **TODOS** los bordes de la serie seleccionada.

Haga clic izquierdo sobre un borde seguido de un clic derecho en el ratón para eliminar un solo borde o seleccione para eliminar los bordes en todos los puntos de tiempo.


Revisar las curvas T2

- Los resultados de ajuste de la curva muestran el comportamiento de la señal de los datos de la imagen. En casos de artefactos de imagen debido a un ajuste, registro incorrecto, artefactos respiratorios o arritmias, el ajuste de la curva puede no ser óptimo.
- Se puede eliminar un punto de intensidad de señal del cálculo haciendo clic directamente en el punto del gráfico y seleccionando el borde de la imagen que se vuelve púrpura.
- Seleccione eliminar desde el botón derecho del ratón (haga clic y mantenga presionado) o seleccione eliminar el teclado.

NOTA: La curva que se muestra solo se genera si se usa la serie temporal para el análisis.

ADVERTENCIA: Es necesario que un usuario debidamente capacitado y calificado revise los resultados del ajuste de la curva T2.

Perfusión miocárdica

El modo de análisis de Perfusión miocárdica permite al usuario revisar y analizar las imágenes de perfusión miocárdica. Las series que tienen aplicada la corrección de movimiento son las recomendadas para el análisis.

NOTA: Se admite el análisis semicuantitativo. Si se dispone de una serie de doble secuencia, se puede aplicar una corrección de sombreado.

NOTA: Se recomienda la creación de una sola serie de imágenes de la perfusión con estrés con corrección de movimiento y una sola serie con las imágenes de reposo con corrección de movimiento.

PRECAUCIÓN: Los parámetros de la pendiente ascendente y la pendiente ascendente relativa pueden no ser exactos en las imágenes en las que no se ha realizado la corrección de sombreado.

ADVERTENCIA: La aplicación solo ayuda a realizar el análisis de las imágenes y no proporciona una interpretación clínica de los resultados de forma automática. El uso y la colocación de mediciones cuantitativas quedan a criterio del usuario. Podría obtenerse un diagnóstico erróneo si las mediciones son inexactas. Las mediciones solo deben ser creadas por un usuario debidamente capacitado y calificado.

FIGURA 1. Interfaz de análisis de perfusión miocárdica

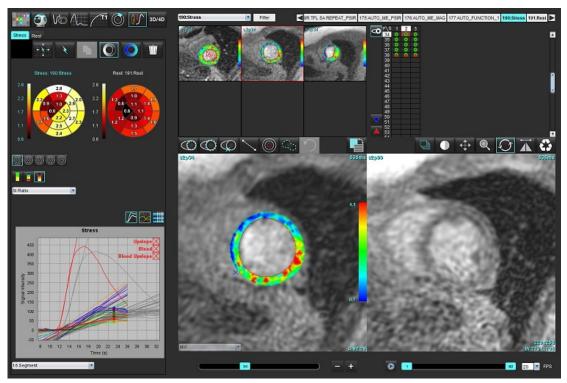


Tabla 1: Herramientas de análisis

+ - +	Replicar todos los cortes, todas las fases.
**	Replicar todas las fases, un solo corte.
*	Realizar la segmentación automática.
≠ ^{A}	Recalcular el análisis después de la edición. (Solamente si se ha ejecutado la segmentación automática).
	Copiar/pegar bordes en todas las fases.
	Recalcular el análisis después de la edición. (Solamente si se ha ejecutado copiar y pegar).
	Corrección de sombreado aplicada.
0	Mostrar superposición de color del segmento.
	No mostrar ninguna superposición
	Mostrar la superposición de color en píxeles para los parámetros calculados.
≥	Mostrar el gráfico.
	Mostrar los gráficos de esfuerzo y reposo.
	Mostrar la tabla de resultados de los parámetros.
	Selección del diagrama polar concéntrico o de 16, 32, 48, 96 segmentos.
	Selección del color del diagrama polar continuo, de 4 colores o de 2 colores.
Sectors 6 Subsectors	Selecciones del diagrama polar concéntrico.

Realizar análisis de perfusión miocárdica

1. Seleccione

2. Seleccione la pestaña para Esfuerzo o Reposo.

- 3. Seleccione la serie de perfusión miocárdica.
- 4. Seleccione para realizar la segmentación automática y el cálculo de análisis.
- 5. Revise todos los trazos endocárdicos y epicárdicos, el punto de inserción del VD en cada corte y edite según sea necesario.
- 6. Confirme la clasificación base, media y apical.
- 7. Para realizar la segmentación manual, seleccione para dibujar el borde endocárdico en un solo corte o en todos los cortes.
- 8. Seleccione para dibujar el borde epicárdico en un solo corte o en todos los cortes.
- 9. Seleccione para copiar/pegar los bordes en todas las fases.
- 10. Coloque el punto de inserción inferior del VD seleccionando
- 11. Revise todos los trazos endocárdicos y epicárdicos, el punto de inserción del VD en cada corte y edite según sea necesario.
- 12. Confirme la clasificación base, media y apical.
- 13. Los fotogramas de inicio y finalización que se utilizan para el análisis se determinan de forma automática por la hora de llegada y la hora pico. Para hacer ajustes, seleccione
 - Haga clic en para asignar la fase de inicio, luego haga clic directamente en la celda de la matriz.
 - Haga clic en para asignar la fase final, luego haga clic directamente en la celda de la matriz.

Edición del borde

Cuando se realiza una edición, se debe volver a calcular el análisis. Aparecerá el símbolo de advertencia de edición.

para realizar la recalculación.

Revisar resultados

1. Seleccione para revisar los parámetros calculados en el menú desplegable de archivos. Consulte la Figura 2.

Al colocar el cursor sobre un segmento en el diagrama polar, se resaltará el gráfico correspondiente a ese segmento.

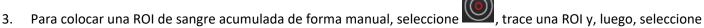
FIGURA 2. Menú desplegable de parámetros calculados

Revisar resultados de gráfico/tabla

- 1. Seleccione para revisar los resultados del gráfico en el menú desplegable de archivos, Figura 3, ubicado en la parte inferior izquierda debajo de la pantalla de la gráfica.
- 2. Haga clic en para mostrar los gráficos.

Cuando se muestra la superposición de color del segmento en la imagen, al colocar el cursor directamente sobre un segmento de color, se resaltará el gráfico correspondiente a ese segmento.

- 3. Haga clic en para mostrar las curvas de estrés y de reposo.
- 4. Haga clic en para mostrar los resultados de los parámetros.

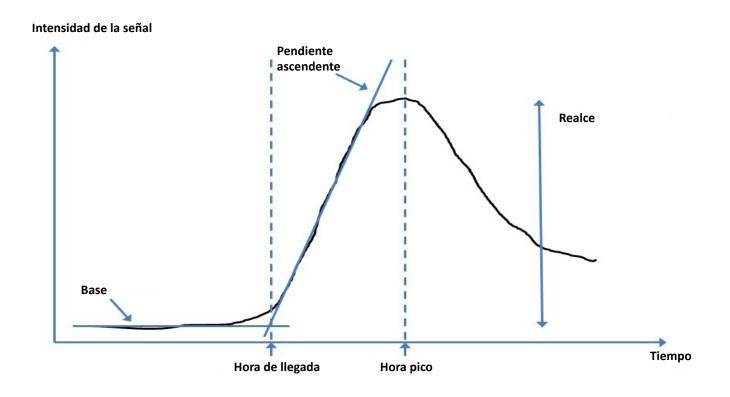

FIGURA 3. Resultados de los gráficos

Calcular la pendiente ascendente relativa (RU) y el índice de reservas (RI)

- Durante la segmentación automática, la ROI de sangre acumulada se coloca sin intervención humana. 1.
- 2. Para cambiar la ubicación del corte de la de sangre acumulada, utilice la vista en miniatura con el fin de seleccionar una ubicación diferente del corte. Para que se cree una nueva ROI de sangre acumulada de forma automática,

Se recomienda el nivel de corte basal.

Para eliminar la ROI de la sangre acumulada, haga clic con el botón derecho del ratón y seleccione



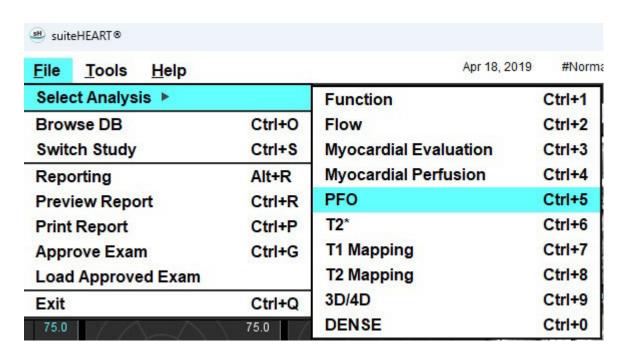
NOTA: Para el cálculo del índice reservado, deben estar presentes tanto el análisis de Esfuerzo como el de Reposo.

PRECAUCIÓN: Los parámetros de resultados de la Perfusión miocárdica de la pendiente ascendente y la pendiente ascendente relativa pueden no ser exactos en las imágenes en las que no se ha realizado la corrección de sombreado.

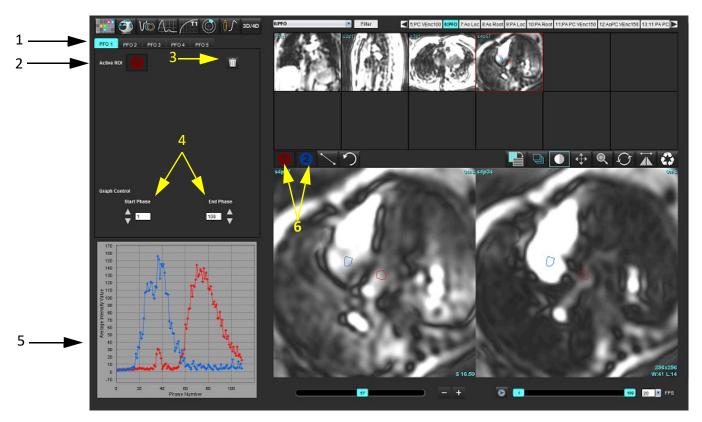
Definición de los parámetros calculados a partir de la curva de perfusión miocárdica

Hora de llegada	tiempo (en segundos) de la intersección de la línea de base y la pendiente ascendente
Hora pico	tiempo (en segundos) en el que la intensidad de la señal alcanza el máximo
Ratio de IS	IS (hora pico-línea de base)/línea de base
Pendiente ascendente	La pendiente ascendente se calcula mediante el ajuste lineal ponderado usando puntos entre la hora de llegada y la hora pico
Pendiente ascendente relativa	RU = pendiente ascendente del miocardio/pendiente ascendente de sangre acumulada
Índice de reservas	El índice de reservas (RU) del miocardio se define como: RI = RU ESFUERZO/RU REPOSO

Análisis del foramen oval permeable (FOP)


La herramienta de análisis de FOP permite la generación de curvas de señal versus tiempo para demostrar un pico temprano para la detección de un FOP.

ADVERTENCIA: La aplicación solo ayuda a realizar el análisis de las imágenes y no proporciona una interpretación clínica de los resultados de forma automática. El uso y la colocación de mediciones cuantitativas quedan a criterio del usuario. Podría obtenerse un diagnóstico erróneo si las mediciones son inexactas. Las mediciones solo deben ser creadas por un usuario debidamente capacitado y calificado.


Iniciar FOP

Seleccionar Archivo > Seleccionar análisis > FOP.

Seleccione una serie en tiempo real.

FIGURA 1. Ventana de análisis de PFO

1. Pestañas editables FOP, 2. ROI activa, 3. Eliminar, 4. Fase de inicio y fin, 5. Intensidad de señal vs. curva de fase, 6. Íconos de análisis FOP

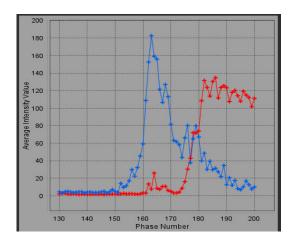
Seleccionar anatomía auricular

Seleccione una imagen en la que se pueda apreciar la anatomía de la aurícula izquierda (AI) y la aurícula derecha (AD).

Generar curva de intensidad auricular izquierda (AI)

- 1. Dibuje la curva seleccionando
- 2. Trace un borde en la AI, en la ventana del Editor de imágenes.
- 3. Mueva el cursor fuera de la ventana del Editor de imágenes.
- Genere una curva de intensidad AI.

La curva de intensidad de señal para la Al se genera automáticamente.


Generar curva de intensidad auricular derecha (AR)

 Genere la curva de intensidad AD siguiendo los mismos pasos enumerados anteriormente para generar la curva de intensidad AI al utilizar

Las curvas se superponen y se muestran en la ventana de visualización de resultados de curvas.

NOTA: Si se ha colocado una ROI en la fase 1, por ejemplo, y se cambia la fase de inicio, la ROI dibujada por el usuario seguirá estando presente en la imagen original donde se colocaron las ROI.

FIGURA 2. Resultados de la curva de FOP

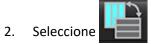
Revisar los datos de la curva y seleccionar el rango de fase

- 1. Revise las curvas en la ventana del informe y ajuste la Fase inicial y la Fase final.
- 2. Use las flechas hacia arriba y hacia abajo para seleccionar la **Fase inicial** y la **Fase final** para establecer el rango de fase para la visualización de la curva.

El ajuste de las fases inicial y final afecta la visualización de las curvas FOP.

Al hacer clic en un punto del gráfico, se actualiza la fase que se muestra en la ventana del Editor de imágenes.

FIGURA 3. Pantalla de selección de fase inicial y final



NOTA: Si hay dos adquisiciones en la misma serie, puede establecer las fases inicial y final para la primera adquisición, dibujar las ROI de la AI y la AD (lo que da como resultado la generación automática de curvas) y luego repetir el proceso en otra pestaña FOP para el segundo conjunto de imágenes. Todas las etiquetas de la ficha del PFO se pueden editar.

Edición de bordes

Edición de múltiples fases en una sola ubicación de corte:

1. Seleccione la ubicación del corte

- 3. Seleccione la primera fase del rango de fases que va a editar.
- 4. Mantenga presionada la tecla Shift y seleccione la última fase del rango que se va a editar.

Las imágenes en miniatura seleccionadas aparecerán resaltadas con un borde de color rojo.

- 5. Edite el borde en la ventana del editor de imágenes.
- 6. Anule la selección del borde haciendo clic en la imagen fuera del borde seleccionado o mueva el cursor fuera de la ventana del editor.

La edición de ROI se puede controlar configurando el alcance.

Seleccione la función de alcance adecuada de la Vista de imagen.

Alcance total – aplica las ediciones de ROI a todas las fases.

Alcance actual al final – aplica las ediciones de ROI desde la fase actual hasta el final.

Solo alcance actual – aplica las ediciones de ROI solo a la fase actual.

Eliminar bordes

para eliminar **TODOS** los bordes.

Haga clic izquierdo sobre una imagen seguido de un clic derecho en el ratón para seleccionar en todos los puntos de tiempo.

y eliminar los bordes

Revisar los resultados de la curva final

Se genera un gráfico a partir de los bordes que muestra la intensidad de píxeles frente al tiempo. Haga clic con el botón

derecho del ratón en

para enviarlo al informe.

T2*

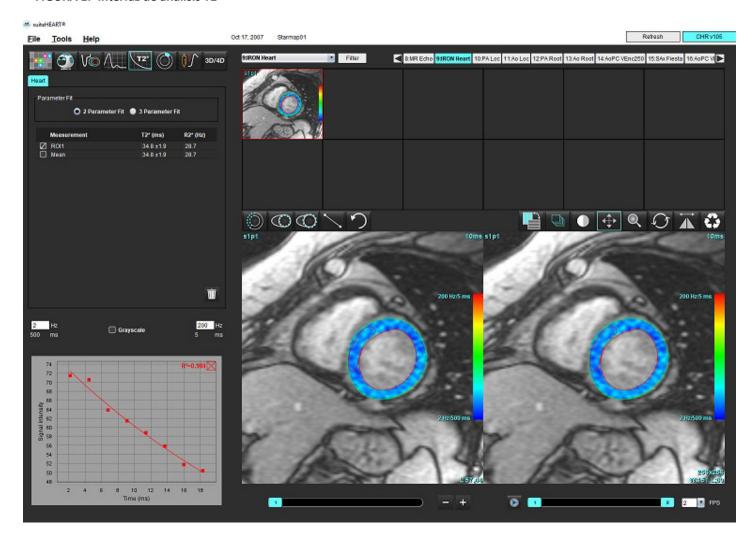
La herramienta de análisis T2* calcula los valores T2* del tejido a partir de una secuencia de eco de gradiente rápido multieco.

La curva T2* es un gráfico de la intensidad de la señal frente al tiempo de eco, que utiliza una fórmula de curva de disminución exponencial. El algoritmo de ajuste T2* se basa en el algoritmo de mínimo cuadrado no lineal de Levenberg-Marquardt.

El cálculo para la curva de disminución T2* es: y = a * exp (-TE / T2 *) + c

Donde:

Tabla 1:


У	es la intensidad de la señal en el momento TE
a	es la magnetización transversal en el tiempo 0 (cero)
TE	es el tiempo de eco
T2*	es la constante de descomposición, y
С	es el ruido de fondo

ADVERTENCIA: La aplicación solo ayuda a realizar el análisis de las imágenes y no proporciona una interpretación clínica de los resultados de forma automática. El uso y la colocación de mediciones cuantitativas quedan a criterio del usuario. Podría obtenerse un diagnóstico erróneo si las mediciones son inexactas. Las mediciones solo deben ser creadas por un usuario debidamente capacitado y calificado.

Procedimiento de análisis del corazón

FIGURA 1. Interfaz de análisis T2*

- 1. Seleccione
- 2. Seleccione la serie apropiada.
- 3. Seleccione el corte de eje corto en el panel de miniaturas.
- 4. Dibuje un borde que abarque el tabique interventricular utilizando Los T2* y R2* se calculan y se muestran en la tabla de resultados. El valor de R2 se calcula y se muestra en el gráfico.

Crear mapa de colores de miocardio

1. Dibuje un borde del contorno endocárdico usando

2. Dibuje un borde del contorno epicárdico usando

El mapa de colores T2*/R2* se superpone en la imagen.

El valor del mapa de colores R2* se puede cambiar.

NOTA: El rango predeterminado para imágenes 1.5T es 5 ms - 500 ms para T2*. El rango predeterminado para imágenes 3.0T es 2,5 ms - 1000 ms para T2*.

4. Haga clic y arrastre hacia arriba o hacia abajo con las flechas para ajustar el rango de color dinámico para el mapa de color.

La superposición de color en el Editor de imágenes cambia dinámicamente.

Los valores de Hz y ms también cambian dinámicamente.

5. Los valores T2* y R2* se pueden determinar seleccionando y colocándolo sobre la superposición del mapa de color en la imagen.

Parámetros de ajuste

Seleccione el ajuste de 2 parámetros o el ajuste de 3 parámetros para la curva de disminución T2*.

FIGURA 2. Ajuste de parámetros

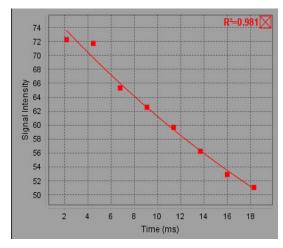
El ajuste de 2 parámetros es ampliamente aceptado según la literatura de revisión por pares [1]. En este modelo, el ruido de fondo, c, se calcula utilizando un algoritmo basado en histograma y se resta de la intensidad de la señal, después de lo cual se realiza un ajuste no lineal.

El ajuste de 3 parámetros también está disponible como se hace referencia en la literatura de revisión por pares [2]. Este modelo es un enfoque no lineal que funciona directamente desde la señal de entrada original.

Para ambos modelos, el valor inicial de T2* se estima a través de un ajuste lineal de prueba.

- 1. D.J Pennell, et al. "Cardiovascular T2-star (T2Star) magnetic resonance for the early diagnosis of myocardial iron overload," Eur Heart J 2001; 22: 2171-2179.
- 2. Ghugre NR, et al. "Improved R2* Measurements in Myocardial Iron Overload," Journal of Magnetic Resonance Imaging 2006; 23: 9-16.

Revisar los resultados de T2*


- 1. Revise la posición del borde en todas las imágenes.
- 2. La tabla enumera las mediciones individuales de T2*/R2* y también calcula un valor medio.

NOTA: La curva T2* es un gráfico de la intensidad de la señal frente al tiempo de eco, que utiliza una fórmula de curva de disminución exponencial. En ocasiones, puede ser necesario eliminar puntos de eco posteriores de la curva de disminución para un mejor ajuste de la curva. Esto puede ocurrir en casos extremos de sobrecarga de hierro cuando la intensidad de la señal puede ser muy baja.

Para eliminar un solo borde de una imagen

- 1. Haga clic izquierdo en el ratón para seleccionar el borde, que se vuelve púrpura.
- 2. Haga clic derecho en el ratón para seleccionar la papelera o utilizar la tecla Eliminar del teclado para quitar un borde.
 - Se elimina el borde y se vuelve a calcular el ajuste de la curva.

FIGURA 3. Curva T2*

ADVERTENCIA: Es necesario que un usuario debidamente capacitado y calificado revise los resultados del ajuste de la curva T2*.

Tabla 2: Conversiones R2*/T2*

Resultado	Unidad	Conversión
R2*	Hz	R2*=1000/T2*
T2*	ms	T2*=1000/R2*

El factor de 1000 se usa cuando T2 y T2* se informan en unidades de milisegundos (ms) y R2 y R2* son Hertz (o s -1).

Visor de flujo 3D/4D

Proporciona un reformateo oblicuo interactivo de las imágenes de flujo 3D y 4D. Hay herramientas disponibles para crear imágenes de contraste de fase 2D y de función 2D a partir de 4D que se pueden analizar. Se puede realizar un análisis de flujo en línea.

NOTA: Una serie 3D con vóxeles isométricos y cortes superpuestos mejora la calidad de las imágenes reformateadas.

NOTA: El Flujo Visor 3D/4D mostrará una serie 4D solo si se tiene licencia de 4D.

NOTA: Si se ha realizado tanto el análisis de contraste de fase 2D como el análisis de flujo 4D en línea, todos los

resultados estarán disponibles en el modo de Análisis de flujo.

PRECAUCIÓN: Los reformateos 3D o de imagen solo proporcionan información adicional suplementaria

para la formulación de un diagnóstico y siempre deben usarse junto con técnicas de imagen

convencionales.

ADVERTENCIA: Siempre correlacione cualquier reformateo 3D con los datos de adquisición originales.

ADVERTENCIA: La configuración de ancho y nivel de ventana (AV/NV) puede afectar la apariencia de diferentes patologías y la capacidad de discernir otras estructuras anatómicas. La configuración incorrecta de AV/NV puede hacer que los datos de imágenes no se muestren. Es posible que se necesiten diferentes configuraciones de AV/NV para revisar todos los datos de imágenes.

FIGURA 1. Muestra herramientas de control y ventanas gráficas

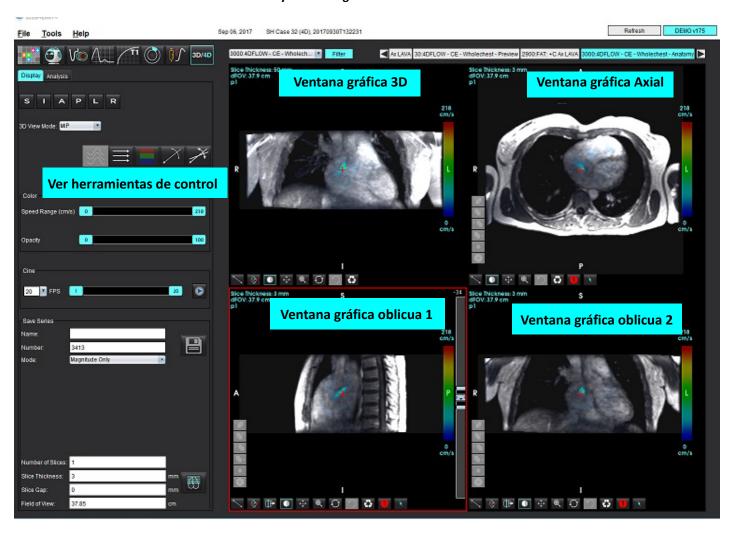


Tabla 1: Ver herramientas de control

Herramienta	Descripción
+	Cursor de cruz: sincroniza la navegación entre todas las ventanas gráficas.
SIAPLR	Botones de orientación: cambia el plano de la imagen en las ventanas gráficas 3D y oblicuas. S = Superior I = Inferior A = Anterior P = Posterior I = Izquierda D = Derecha
	Modo oblicuo : muestra el plano del reformateo oblicuo y la intersección perpendicular para mostrar la anatomía deseada.
X	Modo oblicuo doble : muestra tres planos oblicuos definidos por tres ejes ajustables de color: azul, amarillo y verde. Ajuste cualquier eje para actualizar los otros dos planos oblicuos.
3D View Mode: MIP Surface MIP MINIP	Modo de vista 3D: proporciona modos de representación de imágenes en la ventana gráfica 3D Superficie: visualización basada en un algoritmo compuesto MIP: proyección de intensidad máxima (Predeterminado) MINIP: proyección de intensidad mínima
	Líneas de corriente: Visualiza campos de velocidad 3D en una fase temporal específica. Ajustes: Filtro de flujo: ajusta la intensidad de las líneas de flujo.
	Vectores: flechas que representan la velocidad y la dirección del flujo sanguíneo. Ajustes: Filtro vectorial: ajusta el umbral de velocidad de la sangre. Espaciado: ajuste la densidad de las flechas. Tamaño: ajuste la escala de la flecha a la velocidad local.

Tabla 1: Ver herramientas de control

Herramienta	Descripción
1 2 3 X	1 Superposición de velocidad de color* (Deshabilitado cuando se seleccionan líneas de corriente y vectores). 2 Eliminar superposición de velocidad de color* 3 Visualización de fase* *Disponible solo para flujo 4D.
Speed Range (cm/s) 0 164	Rango de rapidez: ajusta la asignación de velocidad de color de la dirección del flujo. Disponible solo para imágenes de flujo 4D. La leyenda de la barra de color de Rango de rapidez se muestra en el lado derecho de cada ventana gráfica. El valor es una estimación.
Opacity 0 100	Opacidad : controla la opacidad de velocidad de color en la imagen para mejorar la visualización subyacente de la anatomía. Disponible solo para imágenes de flujo 4D.
30 FPS 1 20	Cine: controla fotogramas por segundo y define el fotograma inicial y final de la película cine. Disponible solo para imágenes 3D de magnitud resuelta en el tiempo y flujo 4D. Utilice la barra espaciadora del teclado para reproducir o pausar el cine.
Save Series Name: Image01 Number: 3313 Mode: Magnitude Only Magnitude and Phase Post-Processed Post-Processed All	Guardar serie: crea una serie 2D funcional y convencional o de imágenes de flujo, para análisis o imágenes MIP posprocesadas. Use para ingresar el número de cortes, grosor de corte, brecha y campo de visión. Estos parámetros están anotados en la esquina superior izquierda de cada ventana gráfica. Use Ctrl+T para activar/desactivar. Solo magnitud: crea una serie de magnitud multifásica de un solo corte o de múltiples cortes a partir de las imágenes originales, para usar en el análisis de funciones.
Number of Slices: 1 Slice Thickness: 3 mm Slice Gap: 0 mm Field of View: 37.85 cm	Magnitud y fase: crea una magnitud multifásica de un solo corte o de múltiples cortes con series de fases de las imágenes originales, para usar en el análisis de flujo. Esta opción solo está disponible cuando se ha seleccionado una serie flujo 4D. (También se crea una serie duplicada con corrección automática de fase). Posprocesado: crea imágenes de proyección de máxima intensidad a partir de imágenes 3D. Cuando hay datos de flujo 4D presentes, se crearán series de múltiples fases de un solo corte o de múltiples
	cortes, con superposición de color en las imágenes, para fines de revisión. Todo posprocesado: guarda todas las imágenes formateadas de cada ventana gráfica.
	Guardar : guarda todos los tipos de series de imágenes creados por la definición de la serie en la base de datos local.

Tabla 1: Ver herramientas de control

Herramienta	Descripción
	Planificación de Rx: define el eje del plano de exploración deseado, creado según la definición de serie.
2 - 1	Paginación y engrosamiento: cambia el grosor de la imagen MIP y las páginas, a través del conjunto de imágenes. 1 = haga clic y arrastre los botones laterales para cambiar el grosor de la imagen MIP 2 = haga clic y arrastre el control deslizante a la página a través del conjunto de imágenes o use la rueda de desplazamiento. Los controles se encuentran en el lado derecho de la ventana gráfica seleccionada.
	Lineal: provee la medición de una distancia en línea recta. Haga clic directamente en la medición y luego con el botón derecho del ratón para elegir Eliminar, Localizar o Etiquetar. Delete Locate Label
	Rotación 3D : inclina o gira las imágenes en la ventana gráfica 3D o las ventanas gráficas oblicuas 1 y 2. Haga clic con el botón izquierdo y arrastre directamente en la ventana gráfica para inclinar o rotar.
₫₽	Dirección de flujo : muestra el plano perpendicular en las ventanas gráficas oblicuas 1 y 2. Para usar esta función, haga clic con el botón izquierdo del ratón directamente en la anatomía de interés. Disponible solo para imágenes de flujo 4D.
	Ventana/Nivel: disponible en todas las ventanas gráficas.
‡	Pan: disponible en todas las ventanas gráficas.
Q	Zoom : disponible en todas las ventanas gráficas.

Tabla 1: Ver herramientas de control

Herramienta	Descripción
Q	Rotar : disponible para la ventana gráfica 3D, la ventana gráfica 1 y la ventana gráfica 2.
3	Restablecer: disponible en todas las ventanas gráficas.
	Parámetros de exploración: haga clic con el botón derecho del ratón en cualquier ventana gráfica.

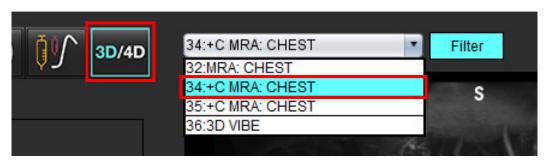
Tabla 2: Tecla rápida

Función	Acción
Cursor objetivo	Coloque el cursor en la anatomía que desee y pulse las teclas Shift + Ctrl.
Diseño de 1x1	Al hacer doble clic en cualquier ventana gráfica de 2x2 se alterna el diseño a 1x1 y de nuevo a 2x2.
Medida Lineal	Se hace haciendo clic en Shift + 1.

Diseño deel visor de flujo3D/4D y salidas de la creación de series

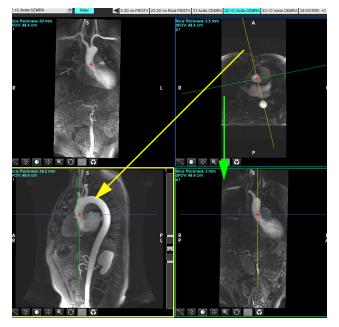
Dependiendo del tipo de serie de imágenes seleccionadas para reformatear, el tipo de creación de imágenes se resume en la tabla a continuación.

Tabla 3: Diseños y salidas del Flujo Visor 3D/4D


Diseño de Flujo Visor 3D/4D	Salidas de las series de imagen 3D	Salidas de las series de imagen de flujo 4D
Vista 3D (arriba, a la izquierda de la ventana gráfica)	Posprocesado	Posprocesado
Axial (arriba, a la derecha de la ventana gráfica)	Solo magnitud Posprocesado (MIP)	Solo magnitud*, Magnitud y fase* y Posprocesado (superposición de color)*
Oblicua 1 (abajo, a la derecha de la ventana gráfica)	Solo magnitud Posprocesado (MIP)	Solo magnitud*, Magnitud y fase* y Posprocesado (superposición de color)*
Oblicua 2 (abajo, a la derecha de la ventana gráfica)	Solo magnitud Posprocesado (MIP)	Solo magnitud*, Magnitud y fase* y Posprocesado (superposición de color)*
*Este tipo de serie se puede utilizar para análisis convencionales con el software suiteHEART®		
Para cada serie de magnitud y fase se creará una serie duplicada con corrección automática de fase.		

Ejemplo de flujo de trabajo: Crear imágenes MIP a partir de una serie de imágenes en 3D

- 1. Seleccione el estudio apropiado y ejecute el software suiteHEART®.
- 2. Seleccione 3D/4D
- 3. Seleccione la serie 3D apropiada del menú desplegable de navegación de la serie. El tipo de imagen seleccionado se indicará en el botón, como se muestra en Figura 2.


FIGURA 2. Navegación por las series

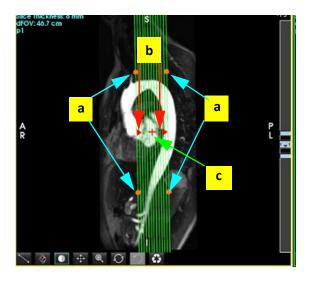
Sep 14, 2010 3D MRA Siemens, 201004221 110200

4. Seleccione y haga clic en la ventana gráfica deseada. Las líneas de reformateo aparecerán como se muestra en la Figura 3.

FIGURA 3. Modo oblicuo doble

- 5. Haga clic en la línea continua, haga clic con el botón izquierdo del ratón y arrastre e incline la línea para mostrar la anatomía deseada.
 - a). Haga clic en la ventana gráfica deseada para guardarla.
 - b). Ajuste el grosor de MIP utilizando los controles en el lado derecho de la ventana gráfica.
 - c). Complete las entradas de definición de serie, como se muestra en la Figura 4.
 - d). Haga clic en el botón Guardar para guardar la imagen MIP en la base de datos local.

FIGURA 4. Definición de serie


6. Cree una pila de imágenes MIP seleccionando

NOTA: El número máximo de imágenes MIP posprocesadas que se pueden crear es 512.

- 7. Haga clic en la ventana gráfica para usar como imagen de referencia y defina una pila de imágenes por lotes, como se muestra en Figura 5.
 - a). Extienda el rango de la cobertura del corte.
 - b). Ajuste el ángulo y las flechas para indicar la dirección del corte.
 - c). Mueva el Rx.

FIGURA 5. Planificación Rx

- 8. Introduzca las opciones de definición de la serie y haga clic en para guardar la pila de imágenes en la base de datos local.
- 9. Para ver la serie creada, cambie al modo de análisis de funciones, seleccione el modo de revisión y haga clic en actualizar.

Ejemplo de flujo de trabajo: Crear series 2D para análisis

La creación del contraste de fase 2D convencional o las imágenes funcionales 2D requieren una serie de flujo 4D que tenga convenciones de magnitud y flujo de resolución de tiempo de D/I, A/P y S/I.

Las series creadas solo como magnitud o magnitud y fase, a partir de imágenes de flujo 4D, son series convencionales 2D válidas que pueden usarse en análisis de flujo o funciones.

Las series que se crean como procesadas posteriormente a partir de flujo 4D tendrán una superposición de flujo de color.

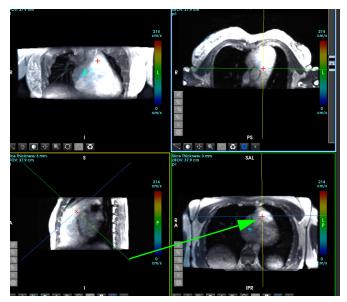

- Seleccione el estudio apropiado y ejecute el software suiteHEART®.
- 2. Seleccione 3D/4D
- 3. Seleccione la serie 4D adecuada en el menú desplegable de navegación de la serie, como se muestra en la Figura 6. El tipo de imagen seleccionado se indicará en el botón, como se muestra en la Figura 6.

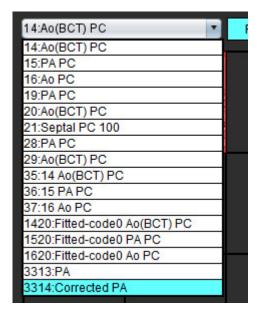
FIGURA 6. Navegación por las series

4. Seleccione y haga clic en la ventana gráfica deseada. Las líneas de reformateo aparecerán como se muestra en la Figura 7.

FIGURA 7. Modo oblicuo doble

- 5. Haga clic en una línea continua, haga clic con el botón izquierdo del ratón y arrastre e incline la línea para mostrar la anatomía deseada.
 - a). Haga clic en el visor deseado para guardar y seleccione el modo Magnitud y Fase para crear una serie de contraste de fase 2D; o bien, seleccione Magnitud para crear una serie funcional.
 - b). Ajuste el grosor de corte utilizando los controles en el lado derecho de la ventana gráfica.
 - c). Complete las entradas de definición de serie, como se muestra en la Figura 8, y haga clic en el botón Guardar para guardar la serie en la base de datos local.

FIGURA 8. Definición y guardado de series



6. Para crear una pila de imágenes multifase y multicorte, seleccione

NOTA: El número máximo de imágenes multifase que se pueden crear es 32.

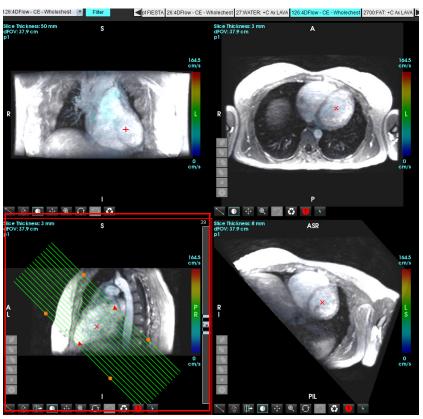

NOTA: Al guardar las series de magnitud y fase, a la segunda serie se le aplicará la corrección automática de la línea de base. La serie se etiquetará como "corregida", como se muestra en la Figura 9.

FIGURA 9. Ejemplo de serie corregida de error de compensación automática de fase

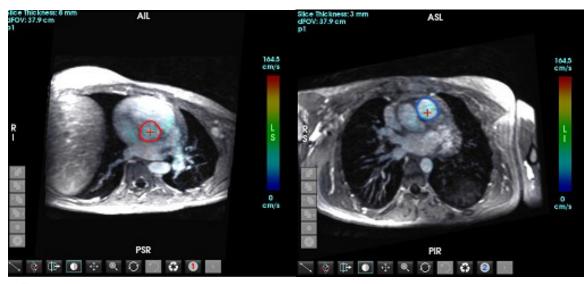
7. Haga clic en la ventana gráfica para usar como imagen de referencia y defina una pila de imágenes por lotes, como se muestra en la Figura 10.

FIGURA 10. Planificación Rx

- 8. Seleccione las opciones de definición de la serie y haga clic en para guardar la pila de imágenes en la base de datos local.
- 9. Para analizar la serie creada, cambie al modo de análisis apropiado y haga clic en actualizar.

Ejemplo de flujo de trabajo: Crear una medición de flujo

Para obtener información detallada sobre las herramientas de interfaz de análisis de flujo, consulte el Análisis de flujo en la página 89.


1. Seleccione la **pestaña Análisis**.

2. Localice el vaso de su interés. Solo la zona aórtica o pulmonar es compatible con la segmentación automática,

tal como se muestra. Haga clic en para generar una curva de flujo.

FIGURA 11. Ejemplo de vasos aórticos y pulmonares

ADVERTENCIA: El usuario es responsable de la colocación precisa y la asignación correcta de la categoría de todas las regiones de interés (ROI), incluidas las generadas por el preprocesamiento.

3. Para la segmentación manual, localice el vaso de su interés y haga clic en como se muestra en la Figura 12.

Seis ROI disponibles, numeradas del 1 al 6. La codificación por colores no cambia en la vista de análisis, en las ventanas gráficas de las imágenes ni en los gráficos.

- 4. Cree un borde alrededor de un vaso depositando 4 puntos alrededor del vaso de interés.
- 5. Haga clic en para la segmentación en todas las fases.

FIGURA 12. Colocación manual de la ROI

Corregir el solapamiento de velocidad

Para corregir el solapamiento de velocidad, arrastre el botón de control de la barra deslizante para el desenvolvimiento de fase. El efecto del cambio se actualizará directamente en la imagen de fase y los resultados se mostrarán directamente en el gráfico de flujo. Para comprobar cada una de las tres imágenes codificadas por velocidad a lo largo de las tres direcciones ortogonales (x, y, z), seleccione en el menú desplegable como se muestra en la Figura 13.

FIGURA 13.

Elaboración de informes

ADVERTENCIA: El informe debe inspeccionarse antes de su aprobación y distribución para garantizar que el contenido coincida con el análisis. Si el contenido del informe no es correcto, es posible que el diagnóstico se demore o que se emita un diagnóstico equivocado. El análisis y la interpretación deben ser realizados por usuarios debidamente capacitados y calificados únicamente.

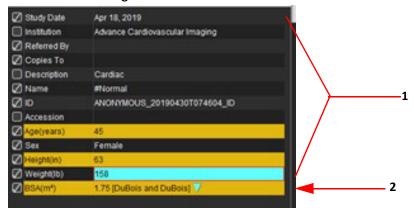
Puede acceder a la interfaz de elaboración de informes haciendo clic en en la esquina inferior derecha de la interfaz, o pulsando Alt+R. Se recomienda tener dos monitores para facilitar los informes de imágenes cardíacas.

Si dispone de varios monitores, seleccione el monitor en la parte superior media derecha de la interfaz.

La interfaz de elaboración de informes (Figura 1) le proporciona una selección a través de menú. Las selecciones pueden hacerse directamente en la interfaz con la sección del informe apropiada rellenando con texto. Informar de textos y rangos categóricos para resultados de parámetros puede definirse en Ajustes. Seleccione Herramientas > Preferencias > Editar y seleccione la pestaña Elaboración de informes.

| Contract | Contract

FIGURA 1. Interfaz de elaboración de informes


- 1. Selección de anatomía cardíaca, 2. Resultados, 3 Selecciones del menú, 4. Esquemas de diagramas polares, 5. Selección de monitor,
- 6. Copiar informe como HTML, 7. Contenido del informe, 8 Demografías de pacientes, 9. Pestañas Macro, 10 Añadir imágenes, gráficos y tablas al informe

Demografías de pacientes

La sección de demografías contiene información del paciente del encabezado DICOM. Los campos pueden modificarse (resaltarse) como se muestra en Figura 10.

NOTA: Las modificaciones no alteran el encabezado DICOM.

FIGURA 2. Demografías

1. Información del encabezado DICOM, 2. Selección ASC

El tipo de cálculo ASC puede seleccionarse haciendo clic con el botón izquierdo del ratón en el triángulo invertido.

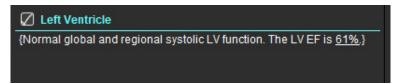
Método de cálculo de ASC	Fórmula
DuBois y DuBois	ASC (m2) = 0.20247 x Altura (m) 0.725 x Peso (kg) 0.425
Mosteller	ASC (m2) = SQRT ([Altura (cm) x Peso (kg)] / 3600) ASC (m2) = SQRT ([Altura (pulgadas) x Peso (lb)] / 3131)
Gehan y George	ASC (m2) = 0.0235 x Altura (cm) 0.42246 x Peso (kg) 0.51456
Haycock	ASC (m2) = 0.024265 x Altura (cm) 0.3964 x Peso (kg) 0.5378
Boyd	ASC (m2) = 0.0003207 x Altura (cm) 0.3 x Peso (gramos) 0.7285 - (0.0188 x LOG (gramos))

Referencia: http://halls.md/formula-body-surface-area-bsa/

La anatomía cardíaca sobre la que quiera informar puede seleccionarse en la parte superior izquierda de la interfaz, como se muestra en Figura 3.

- VI: ventrículo izquierdo
- · VD: ventriculo derecho
- Aurícula
- Válvulas

FIGURA 3. Selección de anatomía cardíaca



Procedimiento de informe

NOTA: Completar rangos categóricos activará la función de rellenado automático del informe. El texto se rellenará en función de los valores definidos por el usuario. Si se ha hecho una selección desde la interfaz del menú durante el proceso de informe, la función de rellenado no seguirá activada.

1. Seleccione en los menús resultados relevantes para el estudio. Si ha seleccionado VI, la sección de informes de Ventrículo izquierdo se llenará con texto, como se muestra en Figura 4.

FIGURA 4. Selección de ejemplos para el ventrículo izquierdo

2. Coloque el cursor fuera del paréntesis y pulse la fecha Atrás del teclado para borrar toda la línea entre paréntesis, o coloque el cursor dentro del paréntesis para borrar o modificar el texto manualmente.

NOTA: Todos los análisis apropiados deben completarse antes de generar parámetros de resultados.

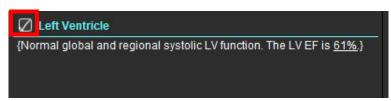

 Todas las secciones de los informes pueden modificarse manualmente. Pueden crearse macros para secciones de informes de Impresión, Técnicas, Historial y Resultados. Para configurar macros, seleccione Herramientas > Ajustes > Edición, seleccione la pestaña Macro.

FIGURA 5. Pestaña Historial que se muestra con macros definidas por el usuario

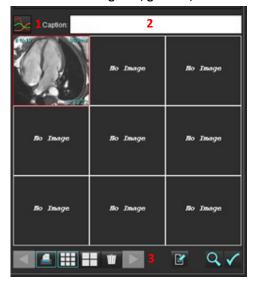
4. En la sección de informes, haga clic en las casillas de verificación para incluir o excluir contenidos en el informe. Consulte la Figura 6.

FIGURA 6. Contenido del informe

5. Haga clic en para exportar el informe en formato HTML.

Añadir imágenes, gráficos o tablas al informe

1. Haga clic derecho con el ratón sobre cualquier ventana gráfica, gráfico o tabla y seleccione

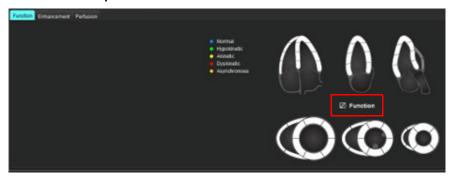

2. Para ver gráficos o tablas, seleccione

NOTA: Las imágenes de varios cortes se pueden enviar al informe. Seleccione **Herramientas> Preferencias > Editar**. Marque Imágenes de varios cortes a Informe, debajo de General.

En el modo revisar, haga clic derecho con el ratón sobre ; el modo cine debe pausarse.

FIGURA 7. Imágenes, gráficos, tablas

1. Ver gráficos y tablas, 2. Teclear título, 3. Controles


Controles

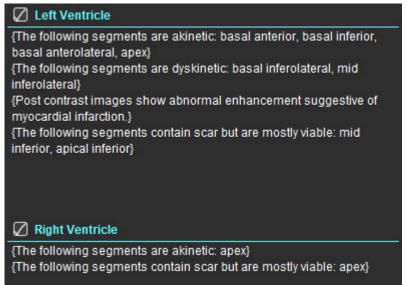
	Muévase entre las distintas imágenes, gráficos o tablas
	Incluir en informe si está activado
	Formato de imagen pequeño o grande
W	Eliminar imágenes, gráficos o tablas
2	Localizar imagen

Diagramas polares

Pueden añadirse diagramas polares al informe si se completa el esquema correspondiente. Los diagramas polares están disponibles para Función, Realzar y Perfusión. Para incluir diagramas polares en el informe, haga clic en el recuadro que se muestra en Figura 8.

FIGURA 8. Esquemas

Selección de segmento

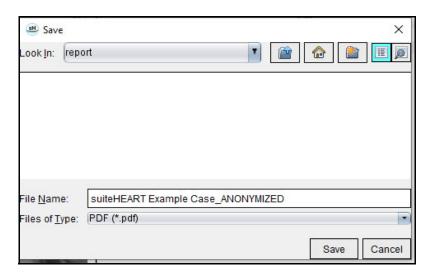

- Haga clic con el botón izquierdo del ratón sobre un descriptor con código de color y clic izquierdo sobre el segmento, o
 clic con el botón derecho del ratón directamente sobre un segmento para seleccionar de la lista, o
 seleccione fuera del segmento para configurar todos los segmentos.
- 2. Las selecciones de segmentos para función y realce llenarán la sección correspondiente del informe tanto del ventrículo izquierdo como el derecho con descriptores de texto de la selección, como se muestra en Figura 9.
- 3. Configure la etiqueta predeterminada, Realce, seleccionando **Herramientas > Ajustes > Edición** y escriba la etiqueta que desee bajo Evaluación miocárdica. Seleccione la etiqueta correspondiente en la pestaña Análisis de Evaluación miocárdica.

NOTA: Si el segmento apical de eje largo se completa, el diagrama polar de 17 segmentos se formateará en el informe.

NOTA: El esquema Realce puede activarse al ver el esquema Perfusión.

4. Para configurar un diagrama polar de 4 colores, seleccione Herramientas > Preferencias > Elaboración de informes > Color de diagrama polar y seleccione 4 colores.

FIGURA 9. Selecciones de segmento


Vista previa del informe

- 1. Seleccione Archivo > Vista previa del informe o seleccione desde la esquina inferior derecha.
- 2. Revise el informe para asegurarse de que se incluyan todos los resultados de análisis deseados y la información estructurada.
- 3. Seleccione para guardar el informe.
- 4. Seleccione el destino y el tipo de archivo.

NOTA: El nombre del archivo del informe se puede configurar en Ajustes. Consulte la Selecciones de los ajustes de informe en la página 29.

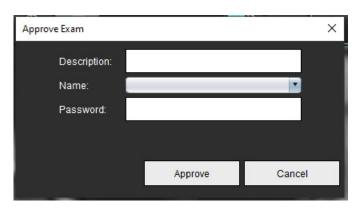
IMPORTANTE: Los valores que se muestran en rojo están fuera de rango, lo que no se podrá distinguir si se imprime el informe en una impresora en blanco y negro.

FIGURA 10. Ventana Guardar

5. Seleccione Imprimir para imprimir el informe.

ADVERTENCIA: El informe debe inspeccionarse antes de su aprobación y distribución para garantizar que el contenido coincida con el análisis. Si el contenido del informe no es correcto, es posible que el diagnóstico se demore o que se emita un diagnóstico equivocado. El análisis y la interpretación deben ser realizados por usuarios debidamente capacitados y calificados únicamente.

Aprobar el examen


La aplicación tiene una función que aprueba y bloquea los informes. El informe aprobado se guarda y se puede ver, pero no se puede cambiar.

NOTA: Requisitos previos: El usuario debe ser un firmante autorizado del informe. Consulte la Aprobadores de informes autorizados en la página 30.

NOTA: El botón y el menú "Examen aprobado" no están habilitados hasta que se haya realizado una acción en una imagen.

1. Seleccione Aprobar examen o seleccione Archivo > Aprobar examen.

FIGURA 11. Ventana Aprobar examen

- 2. Ingrese una descripción de la firma si lo desea.
- 3. Seleccione su nombre de usuario en el menú desplegable Nombre.
- 4. Escriba su contraseña.
- 5. Haga clic en Aprobar para confirmar y cerrar la ventana. Haga clic en Cancelar para cerrar la ventana sin completar el procedimiento de cierre de sesión.

Con la descripción provista, se crea una serie.

NOTA: Cuando se realice un examen aprobado, el informe tendrá la marca de fecha y hora.

Opciones de exportación

Seleccione Herramientas > Exportar > Informe a DICOM.

Se crea una captura secundaria (SCPT) y se guarda en la lista de series.

2. Seleccione Herramientas > Exportar > Informe a Excel.

Exporta el informe como un archivo Excel.

3. Seleccione Herramientas > Exportar > Informe a XML.

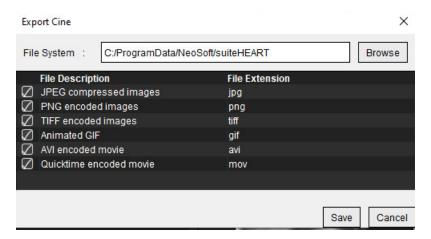
Exporta el informe como un archivo XML.

4. Seleccione Herramientas > Exportar > Imágenes a DICOM.

Se crea una captura secundaria (SCPT) y se guarda en la serie.

5. Seleccione Herramientas > Exportar > Informe a...

Exporta los resultados a un sistema de generación de informes externo.


6. Seleccione Herramientas > Exportar > Imágenes a JPEG, AVI, etc.

A continuación se muestra la ventana desplegable Save Cine (Guardar en modo cine).

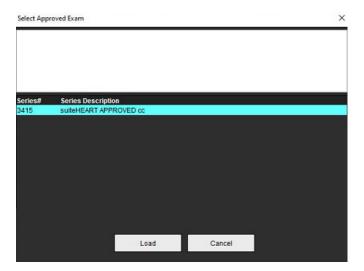
7. Seleccione Herramientas > Exportar > Datos a Matlab (solo con licencia).

Exporta un archivo Mat en formato binario.

FIGURA 12. Ventana Guardar en modo cine

- 1. Seleccione los tipos de archivo que va a exportar.
- 2. Busque la ubicación en la que guardar los archivos.
- 3. Haga clic en Guardar para iniciar el proceso de exportación y cerrar la ventana. La serie que se ve actualmente es el único archivo exportado.

NOTA: Al exportar datos a archivos AVI o MOV, el software suiteHEART® establece la velocidad máxima de fotogramas por segundo en 20 fotogramas por segundo, independientemente de la configuración utilizada para ver dentro de la aplicación.


NOTA: Si exporta una serie personalizada con imágenes multifase y monofásicas como un archivo .avi o .mov, asegúrese de seleccionar una ventana gráfica que contenga una imagen multifase antes de exportar.

Revisar un examen aprobado

1. Seleccione Archivo > Cargar examen aprobado.

Esto muestra la ventana Seleccionar examen aprobado. Todos los exámenes aprobados relacionados con el examen se muestran en la lista.

FIGURA 13. Ventana Selección de examen aprobado

- 2. Seleccione la serie de la lista.
- 3. Haga clic en Cargar para cargar y mostrar el examen aprobado y el análisis que lo acompaña.
 - Un examen aprobado solo se puede visualizar.
 - Se puede generar un nuevo examen a partir de un examen aprobado, editando un informe aprobado y guardando esos cambios en un nuevo examen. El nuevo examen se guarda como una serie de captura secundaria.

NOTA: Al cargar un análisis y un examen aprobados, la información se sobrescribirá en la sesión del análisis actual.

NOTA: Al restaurar los exámenes que se analizaron con versiones anteriores del software suiteHEART®, y si se realizó un "Examen de aprobación de carga", el informe no tendrá el nombre del aprobador ni la fecha y la hora.

Se recomienda revisar todos los análisis y confirmar todos los resultados antes de volver a emitir el informe.

Base de datos de informes

La base de datos de informes le permite realizar una búsqueda en el contenido de informes previamente aprobados. Un informe solo se ingresa en la base de datos de informes después de haber sido aprobado.

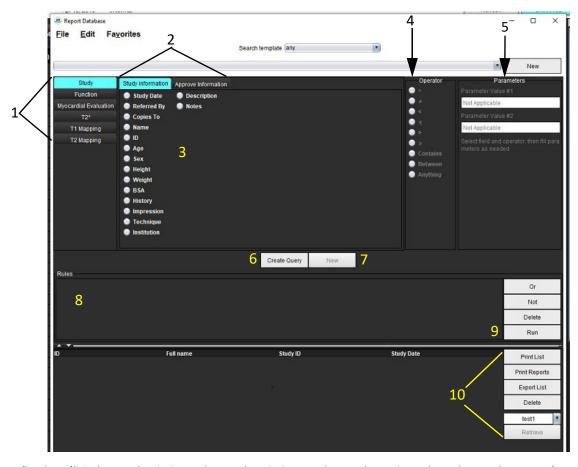
Procedimiento de las herramientas de la Base de datos de informes

1. Seleccione Herramientas > Base de datos de informes.

Seleccione criterios de búsqueda

- 2. Seleccione la plantilla correcta para la búsqueda en el menú desplegable Buscar plantilla.
- 3. Seleccione la consulta de búsqueda en el menú desplegable Historial. La barra de consulta actual muestra los valores seleccionados.

FIGURA 1. Opciones de búsqueda


NOTA: Si la consulta deseada aún no existe, cree una nueva consulta.

Realizar una consulta

1. Seleccione **Nuevo** a la derecha de la barra Historial, como se muestra en la Figura 1.

Los paneles de creación de consultas se muestran en la ventana Base de datos de informes.

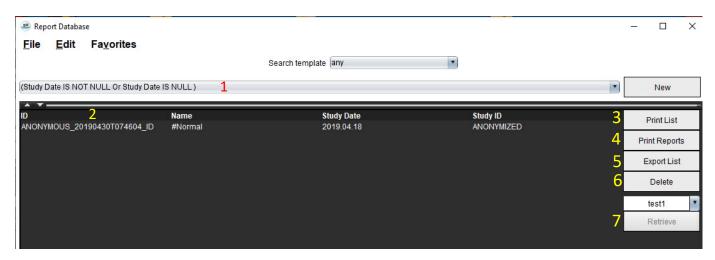
FIGURA 2. Panel de consulta de la base de datos

- 1. Pestañas de análisis de consulta, 2. Grupo de consulta, 3. Campos de consulta, 4. Operadores de consulta, 5. Parámetros de consulta, 6. Crear una consulta, 7 Nueva consulta, 8 Reglas de consulta, 9. Ejecución de consulta, 10. Opciones de consulta
- 2. Seleccione la pestaña de categoría de consulta de Estudio, Función, ME, T2*, Mapeo T1 y Mapeo T2. Los grupos y campos de consulta se actualizan en consecuencia.
- 3. Seleccione el grupo de consultas.
- 4. Seleccione el campo de consulta.

NOTA: La base de datos de informes no puede realizar una búsqueda sobre mediciones personalizadas.

- 5. Seleccione el operador para definir los parámetros de búsqueda de la consulta.
- 6. Introduzca parámetros para ofrecer valores relativos a los criterios de búsqueda.
- 7. Seleccione **Crear consulta** para mostrar la consulta en el panel Reglas. Se pueden ejecutar múltiples consultas durante una sola operación de búsqueda. Repita los pasos del 1 al 7 para cada regla adicional.

El botón No negará un valor de consulta.

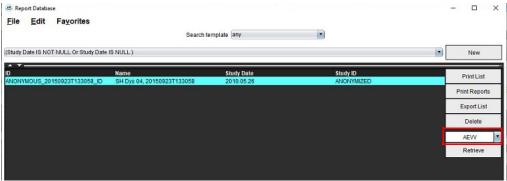

El botón **O** concatenará múltiples consultas mientras efectúa la búsqueda con solo una de las consultas. La función **O** se aplica a la regla de consulta sobre la selección.

El botón Eliminar proporciona un medio para seleccionar y eliminar una regla de consulta.

8. Seleccione **Ejecutar** para buscar en la base de datos.

Los resultados de la búsqueda se muestran en la ventana de resultados de la consulta. Los valores de consulta que satisfacen la búsqueda se muestran en la columna más a la derecha de la ventana de resultados.

FIGURA 3. Ventana de resultados de la consulta

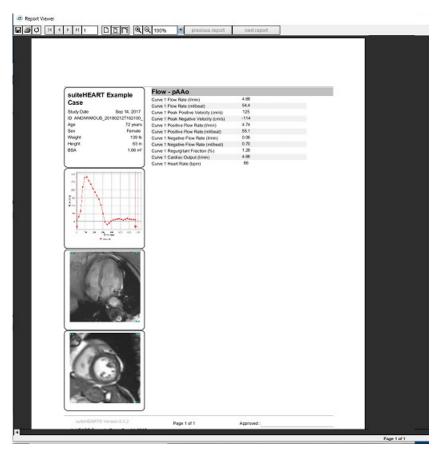

1. Barra de historial, 2. Resultados de la consulta, 3. Imprimir lista, 4. Imprimir informes, 5. Exportar lista, 6. Eliminar, 7. Recuperar estudios

NOTA: Los nuevos resultados de la consulta solo se crean en función de una combinación única de ID de examen, fecha de examen, firma autorizada y plantilla de informe. Si se reconoce un duplicado de estos campos, el informe anterior se reemplaza por el nuevo informe.

Recuperar estudios

- 1. En la ventana Resultados de la consulta, seleccione la **fuente DICOM**.
- 2. Seleccione los estudios en la lista de resultados.
- 3. Haga clic en **Recuperar**.

FIGURA 4. Ventana de resultados de la consulta


Ver los resultados

1. Para ver un informe, haga doble clic en una entrada en la ventana de resultados de la consulta.

Se abre una nueva ventana que muestra el informe seleccionado. Si hay más de un informe disponible, use **Informe siguiente** e **Informe anterior** para recorrer los informes. Haga clic en el marcador de la ventana cerrar

× para cerrar la ventana de Revisión de informes.

FIGURA 5. Visor de informes

2. Desde el informe principal, interfaz de la base de datos:

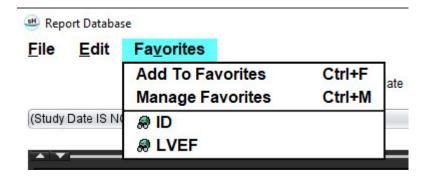
Editar > Seleccionar todo selecciona todos los resultados de búsqueda.

Editar > Borrar selección anula la selección de todos los resultados de búsqueda.

Editar > Invertir selección alterna el estado de selección de cada resultado.

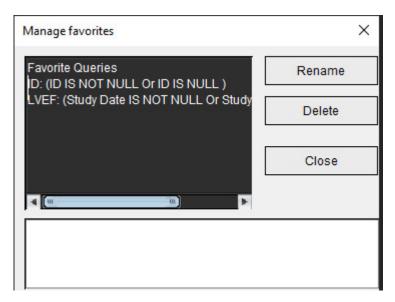
Editar > Borrar historial elimina el registro de consultas anteriores.

- 3. Seleccione **Imprimir lista** para enviar la lista de consultas a la impresora.
- 4. Seleccione Imprimir informes para enviar los informes seleccionados a la impresora.
- 5. Seleccione **Exportar lista** para guardar la lista como un archivo html, y el informe como un pdf.
- 6. Seleccione Eliminar para borrar los informes seleccionados de la base de datos de informes.


Guardar una consulta

- 1. Seleccione Favoritos > Agregar a favoritos.
- 2. En el cuadro de texto Agregar a favoritos, escriba una etiqueta para la consulta y haga clic en **Aceptar**.

FIGURA 6. Menú de Favoritos


FIGURA 7. Desplegable de Favoritos

Eliminar un favorito

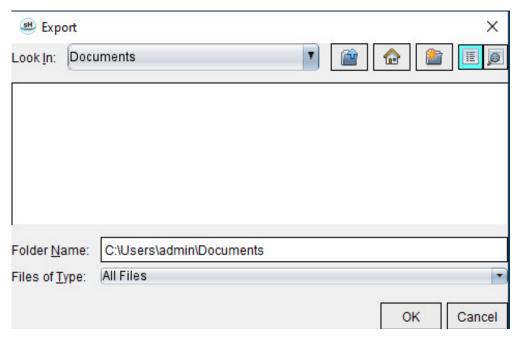
1. Seleccione Favoritos > Administrar favoritos en la ventana Base de datos de informes.

FIGURA 8. Administrar ventana de favoritos

2. Seleccione el artículo favorito.

La fórmula de consulta completa se muestra en la ventana Resultado.

3. Haga clic en **Eliminar**.


Una ventana emergente de confirmación verificará su selección de eliminación. Seleccione Sí.

4. Seleccione **Cerrar**.

Exportar resultados de búsqueda a un archivo HTML

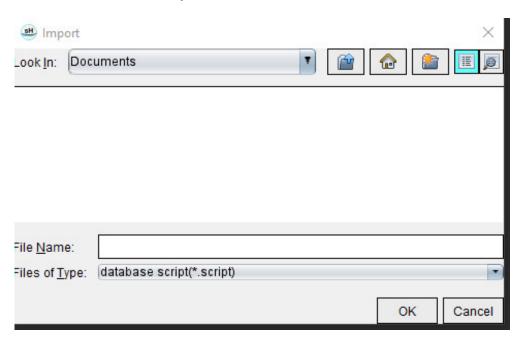
1. Seleccione **Exportar lista** en el lado derecho de la ventana Base de datos de informes.

FIGURA 9. Ventana de exportación

- 2. Seleccione el directorio al cual va a exportar la lista.
- 3. Seleccione Aceptar.
 - Una ventana emergente pregunta si se deben incluir los informes.
 - La lista y los informes se exportan a un archivo HTML.

Exportar la base de datos

A medida que la base de datos se hace más grande, es recomendable archivar los datos.


- 1. Seleccione Archivo > Exportar en la barra de menú de la base de datos de informes.
- 2. Seleccione el directorio al cual va a exportar la lista.
- 3. Seleccione Aceptar. La base de datos se exporta al dispositivo de almacenamiento externo.

Importar una base de datos

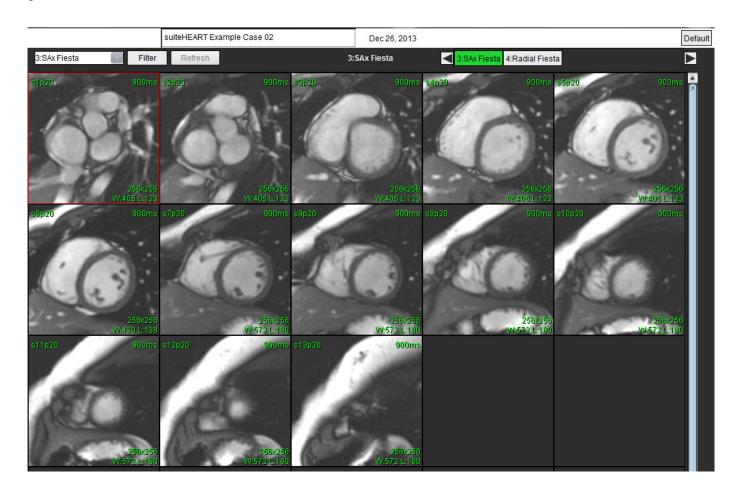
La base de datos se puede importar desde otro PC al que se exportó.

1. Seleccione Archivo> Importar.

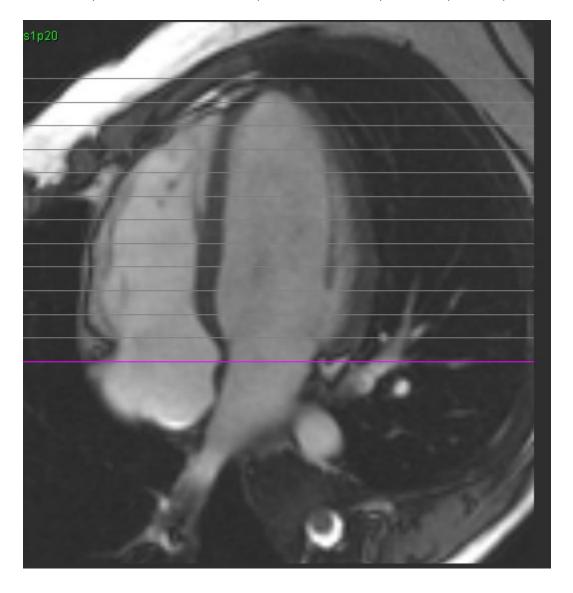
FIGURA 10. Ventana de importación

- 2. Seleccione el directorio desde el cual importar la base de datos.
- 3. La base de datos importada se combina con la base de datos existente.

Apéndice


Artículos de referencia

Los rangos normales, tal como se describen en la Pestaña Plantilla en la página 37 de este manual, pueden establecerse a partir de las siguientes referencias bibliográficas de revisión por pares:


- 1. Kawel-Boehm et al, "Normal Values for Cardiovascular Magnetic Resonance in Adults and Children." Journal of Cardiovascular Magnetic Resonance (2015) 17:29
- 2. Maceira A.M. et al, "Normalized Left Ventricular Systolic and Diastolic Function by Steady State Free Precession Cardiovascular Magnetic Resonance." Journal of Cardiovascular Magnetic Resonance (2006) 8, 417-426.
- 3. Lorenz C. et al. "Normal Human Right and Left Ventricular Mass, Systolic Function, and Gender differences by Cine Magnetic Resonance Imaging." Journal of Cardiovascular Magnetic Resonance 1(1), 7-21, 1999.
- 4. Sechtem, U. et al. "Regional left ventricular wall thickening by magnetic resonance imaging: evaluation in normal persons and patients with global and regional dysfunction." Am. J. Cardiol. 1987 Jan 1;59(1):145-51.
- 5. Storey P, et al. "R2* Imaging of Transfusional Iron Burden at 3T and Comparison with 1.5T," Journal of Magnetic Resonance Imaging 25:540–547 (2007)
- 6. D.J Pennell, et al. "Cardiovascular T2-star (T2Star) magnetic resonance for the early diagnosis of myocardial iron overload", Eur Heart J 2001; 22: 2171-2179.

Apéndice B - Ejemplo de plano de exploración de análisis funcional

Para obtener resultados precisos de la función, el análisis debe realizarse en una vista de eje corto, como se muestra en la primera figura a continuación.

Prescripción correcta del plano de exploración para la adquisición de la vista de eje corto. Los cortes se deben trazar perpendiculares al eje largo del ventrículo izquierdo, con al menos 2 cortes por encima de la base y 1 corte después del ápice incluido en la serie.

Índice

Α Actualización automática 56 AD Análisis automático 82 Análisis, manual 81 ΑI Auto 82 Manual 81 Al manual 68 Análisis combinado 121 Análisis de disincronía 79 Análisis de flujo 89 Cambiar etiqueta 104 Herramientas 99 Leyendas de curvas 105 Opciones de compensación 99 Segmentación automática 91 Selecciones de Qp/Qs 108 Ver resultados 104 Análisis de funciones 63 Configuración de mediciones 84 Medición Agregar 85 Eliminar 85 Medida personalizada Agregar 85 Procedimiento rápido del VI 80 Resultados del análisis de la función ventricular 76 Análisis de plano de válvula 86 Análisis de Realce temprano 126 Análisis del foramen oval permeable (FOP) 146 Análisis regional 78 Aprobar el examen, Informes estructurados 172 Aurícula 81 Avisos de seguridad 3

В

Base de datos de informes 176 Consulta 177 Criterios de búsqueda 176 Eliminar favorito 181 Exportar búsqueda a HTML 182 Guardar consulta 180 Importar base de datos 183 Procedimiento de herramientas 176

Base de datos, navegar 18

Borrado de borde 62

C

Calcular la fracción de regurgitación 110

Calcular mediciones de índice 64

Cálculo de volumen regurgitante 110

Categorías de vaso 91

Configuración de temporizador inactivo 33

Controles de vista de imagen 11

Corrección de fantoma 98

Corrección de línea de base 97

Corrección del solapamiento de velocidad 100

D

Demografías de pacientes 168

Diagramas polares

Selección de segmento 171

Diferencial de señal 125

Pestaña 125

Resultados 125

Ε

Edición de borde

Eliminando 62

Herramienta Retoques 59

ROI de spline de puntos 58

Edición de bordes 58

Edición de rango de fases 95

Editar bordes

Herramienta de extracción 60

Editar leyendas de curvas 105

Elaboración de informes 167

Diagramas polares 171

Exportar 173

Procedimiento 169 Revisar un examen aprobado 172, 174

Vista previa del informe 172

Eliminar favorito, Base de datos de informes 181

Eliminar mediciones 85

Eliminar un borde 62

Etiqueta

Categoría 104

Evaluación miocárdica 114

Análisis T2 119

Formatos del diagrama polar 117

Examinar BD 18

Excluir píxeles de ruido 99

Exportar

Preferencias 47

Exportar resultados de búsqueda a HTML

Base de datos de informes 182

F

Flujo 32

G

Guardar consulta, Base de datos de informes 180

Н

Herramienta de extracción de bordes 60

Herramienta de ROI local 127

Herramienta Retoques 59

Herramientas de edición de ventanas gráficas 95

Herramientas de edición, ventana gráfica 95

Herramientas de gestión de imagen 21

Modo de comparación 24

Herramientas de manipulación de imágenes 12

HTML, exportar resultados 182

ı

Importar

Base de datos 183

Preferencias 47

Impresiones

Macro, Agregar 40

Indicaciones de uso 1

Informe

Añadir imágenes, gráficos, tablas 170

Aprobadores 30

Aprobadores, gestionar 31

Procedimiento de preferencias 29

Iniciar la aplicación 6

Interfaz de usuario

Cine 11

Controles del visor de imágenes 11

Descripción general 8

Elaboración de informes 18

Manipulación de imagen 12

Menú de archivo 10

Menú de ayuda 11

Menú de herramientas 10

Modo de referencia cruzada 12

Modos de análisis 9

Navegación por las series 9

Ventana del editor 10

Vista de modo 10

Interpolación Basal 69

M

Macro

Ejecutar 41

Eliminar 41

Impresiones, Agregar 40

Preferencias 40

Texto 40

Mapa de colores del miocardio 152

Mapeo T1 129

Mapeo T2 135

Mediciones

Eliminar 85

Lineales 84

Personalizado, Agregar 85

Personalizado, Eliminar 85

Mediciones de índice, calcular 64

Mediciones, predeterminadas 84

Medida Lineal

Configuración 84

Menú de herramientas 10

Modo cine 11

Modo de comparación 24

Modo de referencia cruzada 12

Modo histograma 102

Mover una categoría de vaso 94

Movimiento de categorías de vasos 94

Ν

Navegación por las series 9

0

Opciones de compensación 99

Opciones del menú de archivo 10

Opciones del menú de ayuda 11

P

Peligros del equipo 3

Pestaña

Elaboración de informes 18

Pestaña de Mapeo T1/T2 44

Pestaña impresión 42

Pestaña Virtual Fellow® 43

Píxeles de ruido, Exclusión 99

Plantilla

Preferencias 37

Preferencias

Definir 28

Editar 28

Exportar 47

Exportar (imagen/vídeo) 36

Exportar imagen/vídeo 36

Filtro de serie 35

Flujo 32

Función 34

General 31

Importar 47

Informar de aprobadores 31

Informe 29

Macro 40

Pestaña de Mapeo T1/T2 44

Pestaña impresión 42

Pestaña Virtual Fellow® 43

Plantilla 37 Temporizador inactivo 33 Virtual Fellow® 30

Preferencias generales 31

Procedimiento de análisis de Realce tardío 115

Procedimiento de segmentación manual 92

Q

Qp/Qs

Calcular 108 Selecciones 108

R

Realce tardío

T2 121

Resultados del análisis integrado 113

ROI de spline de puntos 58

S

Salir de la aplicación 6

Segmentación

Auto 92

Manual 92

Segmentación automática 91

Procedimiento 92

Todos los cortes, monofásico 67

Todos los cortes, todas las fases 66

Segmentación automática de VI y VD 64

Segmentación de VD 64

Segmentación de VI 64

Selecciones de modo de curva 101

Superposición de color 100

Т

T2Star 150

Ajuste de parámetros 152 Mapa de colores de miocardio, Crear 152

Procedimiento de análisis 151

Resultados 153

Tabla de volumen de la cámara 77

U

Uso previsto 2

٧

Velocidad pico, definida por el usuario 101

Ventrículos 64

VI

Manual 68

Virtual Fellow® 48

Herramientas de la interfaz 50

Virtual Fellow™

Interfaz 50

Ver protocolos 52

Visor 21

Visor de flujo 3D/4D 154

Componentes de la interfaz 155

Diseño del visor 159

Salidas de la creación de series 159

Vista previa del informe 172